Advertisement

Ion beam gettering in GaP

  • H. Klose
  • M. Griepentrog
Part VI. Implantation, Annealing and Radiation Effects
Part of the Lecture Notes in Physics book series (LNP, volume 175)

Abstract

The experimental investigations of the ion beam gettering of copper in GaP outlined in this paper indicate that
  1. (i)

    copper atoms decorate the ion implanted damage not only of noble gas atoms but also other atoms and especially damage region caused by copper ions themselves;

     
  2. (ii)

    in comparison with the gettering of process-induced midgap recombination centers in Si [9] and Cr in GaAs [3] the determined activation energy couldcharacterize the binding of copper atoms in damage regions, whereas the migration coefficient Dm agrees with the diffusion coefficient for this temperature;

     
  3. (iii)

    the differences of the copper gettering between 31P+ and 69Ga+ implanted regions could be caused by the dependence of depth of the Ga vacancies and/or by stoichiometric disturbances like in ion implanted GaAs [3], because the mass ratio of P and Ga amounts to about 0.45;

     
  4. (4i)

    the dependence of gettered copper atoms on the mass number implanted ions can be produced by special radiation damage and the different depths of dislocation network.

     

Keywords

Depth Profile Copper Atom Damage Region Damage Production Concentration Depth Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.R. Hunter, L. Eprath, W.D. Grobman, G.M. Osburn, B.L. Crowder, A. Cramer, H.E. Luhn, IEEE Journ. Solid State Cir. SC-14, 275 (1979)Google Scholar
  2. 2.
    D. Lecrosnier, J. Paugam, G. Pelous, F. Richou, M. Salvi, Journ. Appl. Phys. 52, 5090 (1981)Google Scholar
  3. 3.
    T.J. Magee, J. Hung, V.R. Deline, C.A. Evans, Appl. Phys. Letters 37, 53 (1980)Google Scholar
  4. 3a.
    T.J. Magee, H. Kawayoshi, R.D. Ormond, L.A. Christel, J.F. Gibbons, C.G. Hopkins, C.A. Evans, D.S. Day, Appl. Phys. Letters 39, 906 (1980)Google Scholar
  5. 4.
    B.W. Wssels, El. Letters 15, 748 (1979)Google Scholar
  6. 5.
    M. Griepentrog, H. Kerkow, H. Klose, U. Müller-Jahreis, Proc. Int. SIMS Conf. 3, 322 (1981), BudapestGoogle Scholar
  7. 6.
    E.G. Grimmeiss, B. Monemar, L. Samuelson, Solid State El. 21, 1505 (1978)Google Scholar
  8. 6a.
    R.N. Bhargavy, P.M. Harnack, S.P. Herko, P.C. Mürau, R.J. Seymour, Journ. Lum. 12/13, 515 (1976)Google Scholar
  9. 7.
    A.F. Burenkov, F.F. Komarov, M.A. Kumakhov, M.M. Tomkin, Tablizy parametrow prostranstrennosvo raspredelenija ionnoimplantirovannych primessej. Minsk 1980 (in russian)Google Scholar
  10. 8.
    W. Frentrup, M. Griepentrog, Gemeins, Jahresbericht 1981, ZfK Rossendorf, Dresden (to be published 1982)Google Scholar
  11. 9.
    C.T. Sah and C.T. Wang, Journ. Appl. Phys. 46, 1767 (1975)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Klose
    • 1
  • M. Griepentrog
    • 1
  1. 1.Sektion PhysikHumboldt-Universität zu BerlinBerlin, Invalidenstr. 42GDR

Personalised recommendations