Compositional transition layers in heterostructure

  • Jun-ichi Nishizawa
  • Masayoshi Koike
Part IV. Defects in Compound Semiconductors
Part of the Lecture Notes in Physics book series (LNP, volume 175)


The transitional layer in heterostructure is associated with the very serious problem of the lattice mismatch dislocation. A conventional method to overcome this problem is the application of different kinds of buffer layers between the epitaxial layer and the substrate, and on the other hand, the use of substrates for the epitaxy with nearly the same lattice constant and thermal expansion coefficient. Another important question is the deviation of the composition of the compound crystal from the stoichiometric one, because these deviations correspond to different kinds of defects and reduce the radiative efficiency, promote the propagation of dislocations and change the lattice constant even if the composition throughout the mixed crystal is the same. Therefore the lattice mismatch dislocation can be minimized by both, adjustment of the composition of the mixed crystal and controlling the deviation from the stoichiometric composition.


Lattice Constant Active Layer Epitaxial Layer GaAs Substrate Misfit Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.T. Lee, N. Miyamoto, J. Nishizawa, J. Electrochem. Soc. 122, 530 (1975)Google Scholar
  2. 2.
    H. Ohtsuka, K. Ishida and J. Nishizawa, Japan J. Appl. Phys. 8, 632 (1969)Google Scholar
  3. 3.
    I. Kudman and R.J. Paff, J. Appl. Phys. 43, 3760 (1972)Google Scholar
  4. 4.
    O.N. Ermakov, L.S. Garbe, Y.A. Golovanov, V.P. Sushkov and M.V. Chekichev IEEE ED-26, 1190 (1979)Google Scholar
  5. 5.
    G.B. Stringfellow, J. Appl. Phys. 43, 3455 (1972)Google Scholar
  6. 6.
    G.A. Rozgonyi, P.M. Petroff and M.B. Panish, Appl. Phys. Lett. 24, 251 (1974)Google Scholar
  7. 7.
    M.S. Abrahams, J. Blanc and C.J. Buiocchi, J. Appl. Phys. 45, 3277 (1974)Google Scholar
  8. 8.
    G.B. Stringfellow and P.E. Greene, J. Appl. Phys. 40, 502 (1969)Google Scholar
  9. 9.
    M.S. Abrahams, L.R. Weisberg, C.J. Buiocchi and J. Blanc, J. Master, J. Mater. Sci. 4, 223 (1969)Google Scholar
  10. 10.
    G.H. Olsen, M.S. Abrahams, C.J. Buiocchi and T.J. Zamerowski, J. Appl. Phys. 46, 1643 (1975)Google Scholar
  11. 11.
    J. Nishizawa, Y. Okuno, M. Fukase and H. Tadano, J. Crystal Growth 52, 929 (1981)Google Scholar
  12. 12.
    R. Mariette, V. Thierry-Mieg, A. Etcheberry, J.C. Guillaume, A. Marbeuf and M. Rommeluere, J. Crystal Growth 53, 413 (1981)Google Scholar
  13. 13.
    J. Nishizawa, Y. Okuno, IEEE Trans. Electron Devices ED-22, 716 (1975)Google Scholar
  14. 14.
    J. Nishizawa, Y. Okuno, H. Tadano, J. Crystal Growh 31, 215 (1975)Google Scholar
  15. 15.
    W.R. Hitchens, N. Holonyak, Jr., M.H. Lee, J.C. Campbell, J.J. Coleman, W.O. Groves and D.L. Keume, Appl. Phys. Lett. 25, 352 (1974)Google Scholar
  16. 16.
    H.M. Macksey, J.C. Campbell, G.W. Zack and N. Holonyak, Jr., J. Appl. Phys.43, 3533 (1972)Google Scholar
  17. 17.
    J. Nishizawa, M. Koike, K. Miura and Y. Okuno, Japan J. Appl. Phys. 19, 25 (1980)Google Scholar
  18. 18.
    J. Nishzawa, Y.J. Shi, K. Suto and M. Koike, J. Appl. Phys. 53, 3878 (1982)Google Scholar
  19. 19.
    V.G. Kermidas, H. Temkin and W.A. Bonner, Appl. Phys. Lett. 40, 731 (1982)Google Scholar
  20. 20.
    J.M. Parsey, Y. Nanishi, J. Lagowski and H.C. Gatos, J. Electrochem. Soc. 128, 937 (1981)Google Scholar
  21. 21.
    J. Nishizawa, OYO BUTURI 41, 912 (1972) (A monthly publication of the Japan Society of Applied Physics)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jun-ichi Nishizawa
    • 1
  • Masayoshi Koike
    • 1
  1. 1.Research Institute of Electrical CommunicationTohoku UniversitySendaiJapan

Personalised recommendations