Algebraic semantics and program logics: Algorithmic logic for program trees

  • Patrice Enjalbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 148)


The aim of this paper is to ground Algorithmic (or Dynamic) Logic on Algebraic semantics in the french acceptation of the term, i.e. theory in which the meaning of a program is a tree resulting from an infinite formal unfolding. We present an algorithmic system in which programs are program-trees and also an example of how it can be applied in order to design systems for programs. Another feature is the use of techniques of Lω1ω (the notion of Consistency Property) for proving completeness and Model Existence theorems.


Program Logic Deductive System Algebraic Operation Symbolic Execution Algebraic Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.W. DE BAKKER: Recursive programs as predicate transformers, in: Formal descriptions of programming concepts, E.J. NEUHOLD ed. North Holland, 1978 p. 165–202.Google Scholar
  2. [2]
    B. COURCELLE, M. NIVAT: The Algebraic Semantics of Recursive Program Schemes, in Proc. 7th MFCS Symposium, 1978, Lecture Notes in Computer Science, Vol. 62, p. 16–30.Google Scholar
  3. [3]
    G. COUSINEAU: Les arbres à feuilles indicées: un cadre algébrique de définition des structures de contrôle. Thèse d'Etat, Paris, 1977.Google Scholar
  4. [4]
    G. COUSINEAU: An algebraic definition of control structures, Theoretical Computer Science 12, 1980, p. 175–192.Google Scholar
  5. [5]
    G. COUSINEAU: La programmation en EXEL; revue technique THOMSON-CSF, Vol. 10, no 2, 1978, p. 209–234 et Vol. 11, no 1, 1979, p. 13–35.Google Scholar
  6. [6]
    G. COUSINEAU, P. ENJALBERT: Program Equivalence and provability, Lecture notes in Computer Science no 74, p. 237–245.Google Scholar
  7. [7]
    DONER: Tree acceptors and some of their applications, J. Comput. System Science, Vol. 4, 1970, p. 406–451.Google Scholar
  8. [8]
    P. ENJALBERT: Systèmes de déduction pour les arbres et les schémas de programmes, RAIRO Informatique Théorique, Vol. 15, no 1, 1981, p. 3–21 et Vol. 14, no 4, 1980.Google Scholar
  9. [9]
    P. ENJALBERT: Contribution à l'étude de la logique Algorithmique... Thèse d'Etat Paris VII, 1981.Google Scholar
  10. [10]
    P. ENJALBERT: ω-rules and continuity. To appear in: Proceedings of Bialowieza Conference on program logics, 1981.Google Scholar
  11. [11]
    D. HAREL: First order dynamic logic, springer lecture notes in Computer Science, no 68, 1979.Google Scholar
  12. [12]
    C. HENRY: Etude des transformations de programmes EXEL, réalisation d'un transformateur automatique, contrat SESORI no 218, Rapport final, 1980.Google Scholar
  13. [13]
    H.J. KEISLER: Model theory for infinitary Logic, Studies in logic and the foundations of Mathematics, Vol. 62, North Holland, 1971.Google Scholar
  14. [14]
    F. KRÖGER: Infinite proof rules for loops. Acta Informatica, Vol. 14, Fas. 4, 1980.Google Scholar
  15. [15]
    G. MIRKOWSKA: Propositional algorithmic logic. Internal report, Institut de Mathématiques, Université de Varsovie, 1979.Google Scholar
  16. [16]
    A. SALWICKI: Formalized algorithmic languages, Bull. Acad. Pol. Sci. Ser. Math. Astr. Phys. 18, 1970, p. 227–232.Google Scholar
  17. [17]
    D. SCOTT: The lattice of flow diagrams in: Symposium on semantics of algorithmic languages (E. ENGELER ed.), Lecture notes in Math., no 188, Springer Verlag, Berlin, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Patrice Enjalbert
    • 1
  1. 1.Laboratoire Central de Recherches — THOMSON-CSFDomaine de CorbevilleOrsayFrance

Personalised recommendations