Advertisement

Nonstandard runs of Floyd-provable programs

  • I. Németi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 148)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andréka,H. Németi,I.: On the completeness problem of systems for program verification. (In Hungarian.) Math.Inst.Hung.Acad.Sci.--SZKI, 1977.Google Scholar
  2. [2]
    Andréka, H. Németi I.: Completeness of Floyd Logic. Bull.Section of Logic (Wrowlaw), Vol 7, No 3, (1978), pp.115–120.Google Scholar
  3. [3]
    Andréka, H. Németi, I.: A characterization of Floyd provable programs. Preprint, Math.Inst.Hung.Acad.Sci. No 8/1978. In: Mathematical Foundations of Computer Science '81 (Proc. Strbské Pleso Czechoslovakia) Ed.: J. Gruska, M. Chytil, Lecture Notes in Computer Science 118, Springer, Berlin, 1981. pp.162–171.Google Scholar
  4. [4]
    Andréka, H. Németi I.: A complete first order dynamic logic. Preprint, Math.Inst.Hung.Acad.Sci., No 810930, 1980. pp.1–120.Google Scholar
  5. [5]
    Andréka, H. Németi, I. Sain, I.: Completeness problems in verification of programs and program schemes. Mathematical Foundations of Computer Science MFCS'79 (Proc. Olomouc, Czechoslovakia) Lecture Notes in Computer Science 74, Springer, Berlin, 1979.pp.208–218.Google Scholar
  6. [6]
    Andréka, H. Németi, I. Sain, I.: Henkin-type semantics for program schemes to turn negative results to positive. In: Fundamentals of Computation Theory FCT'79 (Proc. Berlin) Ed.: L. Budach, Akademie, Berlin. 1979. pp.18–24.Google Scholar
  7. [7]
    Andréka,H. Németi,I. Sain,I.: A complete logic for reasoning about programs via nonstandard model theory. Theoretical Computer Science Vol 17 (1982) Part I in No 2, Part II in No 3. To appear.Google Scholar
  8. [8]
    Bell,J.L. Slomson,A.B.: Models and Ultraproducts. North-Holland, 1969.Google Scholar
  9. [9]
    Biró, B.: On the completeness of program verification methods. Bull. Section of Logic, Wroclaw, Vol 10, No 2 (1981), pp.83–90.Google Scholar
  10. [10]
    Chang,C.C. Keiser,H.J.: Model Theory. North-Holland, 1973.Google Scholar
  11. [11]
    Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. COMPUT. Vol 7, No 1, 1978, pp.70–90.Google Scholar
  12. [12]
    Csirmaz, L.: On definability in Peano Arithmetic. Bull.Section of Logic (Wroclaw), Vol 8, No 3, 1979. pp.148–153.Google Scholar
  13. [13]
    Csirmaz, L.: Programs and program verifications in a general setting. Theoretical Computer Science Vol 16 (1981), pp.199–211.Google Scholar
  14. [14]
    Csirmaz, L.: On the completeness of proving partial correctness. Acta Cybernetica, Tom 5, Fasc 2, Szeged, 1981. pp.181–190.Google Scholar
  15. [15]
    Csirmaz,L. Paris,J.: A property of 2-sorted Peano models and program verification. Preprint, Math.Inst.Hung.Acad.Sci., 1981.Google Scholar
  16. [16]
    Dahn, B.I.: First order predicate logics for Kripke-Models. Dissertation(B). Humboldt Univ., Berlin, 1979.Google Scholar
  17. [17]
    Hájek, P.: Making dynamic logic first-order. In: Mathematical Foundations of Computer Science MFCS' 81 (Proc.Strbské Pleso, Czechoslovakia) Ed.: J. Gruska, M. Chytil, Lecture Notes in Computer Science 118, Springer, Berlin, 1981. pp.287–295.Google Scholar
  18. [18]
    Henkin, L. Monk, J.D. Tarski, A. Andréka, H. Németi, I.: Cylindric Set Algebras. Lecture Notes in Mathematics 883, Springer-Verlag, Berlin, 1981. v+323p.Google Scholar
  19. [19]
    Németi,I.: Nonstandard dynamic logic. In: Proc. Workshop on Logics of Programs (May 1981, New York) Ed.: D.Kozen, Lecture Notes in Computer Science, To appear.Google Scholar
  20. [20]
    Richter,M.M. Szabo,M.E.: Towards a nonstandard analysis of programs. In: Proc. 2nd Victoria Symp. on Nonstandard Analysis (Victoria, British Columbia, June 1980) Lecture Notes in Mathematics. Ed.: A.Hurd, Springer Verlag, 1981.Google Scholar
  21. [21]
    Sain, I.: There are general rules for specifying semantics: Observations on abstract model theory. CL & CL Budapest, Vol 13, 1979. pp.251–282.Google Scholar
  22. [22]
    Sain, L.: First order dynamic logic with decidable proofs and workable model theory. In: Fundamentals of Computation Theory FCT' 81, (Proc.Szeged, 1981) Ed.: F. Gécseg, Lecture Notes in Computer Science 117, Springer, Berlin, 1981. pp.334–340.Google Scholar
  23. [23]
    Salwicki, A.: Axioms of Algorithmic Logic univocally determine semantics of programs. In: Mathematical Foundations of Computer Science MFCS' 80 (Proc. Rydzyna, Poland) Lecture Notes in Computer Science 88, Springer, Berlin, 1980. pp.552–561.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • I. Németi
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of Sciences BudapestHungary

Personalised recommendations