A formal system for parallel programs in discrete time and space

  • Hiroya Kawai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 148)


Parallel Program Flow Graph Dynamic Logic Completeness Theorem Tense Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Banachowski, L., Kreczmar, A., Mirkowska, G., Rasiowa, H., and Salwicki, A.: An introduction to algorithmic logic: Mathematical investigations in the theory of programs, Math. Found. of Comp. Sci., Vol. 2, 7–99. Banach Center Pub., Warsaw (1977).Google Scholar
  2. [2]
    Dijkstra, E.W.: Cooperating sequential processes. In: Programming Languages Ed. Genuys, F.. Academic Press, New York (1968).Google Scholar
  3. [3]
    Dod: Reference manual for the Ada programming language (1980).Google Scholar
  4. [4]
    Floyd, R.W.: Assigning meaning to programs. In: Proc. Symp. in Appl. Math., Ed. Schwarz, J., 19–32. AMS, Providence, R.I. (1967).Google Scholar
  5. [5]
    Gallin, D.: Intensional and higher-order modal logic. North-Holland, Amsterdam, Oxford (1975).Google Scholar
  6. [6]
    Harel, D.: First order dynamic logic. In: Lecture Notes in Comp. Sci., Vol. 68. Springer, Berlin-Heidelberg-New York (1979).Google Scholar
  7. [7]
    Hoare, C.A.R.: Axiomatic basis for computer programming. Comm. ACM, 10, 565–583 (1969).Google Scholar
  8. [8]
    Jassen, T.M.V. and van Emde Boas, P.: On the proper treatment or referencing, dereferencing, and assignment. In: 4 th Colloq. of Automata, Languages, and Programming, Lecture Notes in Comp. Sci., Vol. 52. Springer, Berlin-Heidelberg-New York (1977).Google Scholar
  9. [9]
    Kröger, F.: LAR: A logic of algorithmic reasoning. Acta Informatica, 8, 243–266 (1977).Google Scholar
  10. [10]
    Kröger, F.: Unendliche Schlussregeln zur Verifikation von Programmen. TUM-I80009, Juli (1980).Google Scholar
  11. [11]
    Manna, Z.: Logics of programs. In: Proc. of IFIP Congress 80, Ed. Lavinton, S.. North-Holland, Amsterdam-New York-Oxford (1980).Google Scholar
  12. [12]
    Németi, I.: Nonstandard dynamic logic. Preprint, Math. Inst. of the Hungarian Academy of Sciences (1981).Google Scholar
  13. [13]
    Pnueli, A.: The temporal semantics of concurrent programs. In: Semantics of Concurrent Computation, Ed. Kahn, G., Lecture Notes in Comp. Sci. Vol. 70, 1–20. Springer, Berlin-Heidelberg-New York (1979).Google Scholar
  14. [14]
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17 th Ann. IEEE Symp. on Foundations of Comp. Sci., 109–121. Oct. (1976).Google Scholar
  15. [15]
    Sundholm, G.: A completeness proof for an infinitary tense logic. Theoria, 43, 47–51 (1977).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Hiroya Kawai
    • 1
  1. 1.Computation Center of Osaka UniversityIbaraki City, OsakaJapan

Personalised recommendations