Advertisement

Sharpening the characterization of the power of Floyd method

  • H. Andréka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 148)

Keywords

Similarity Type Program Scheme Dynamic Logic Proof Method Program Verification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andréka, H. Németi, I., Completeness of Floyd's program verification method w.r.t. nonstandard time models, Seminar Notes Math. Inst. Hungar. Acad. Sci.-SZKI 1977 (in Hungarian). This was abstracted in [2].Google Scholar
  2. [2]
    Andréka, H. Németi I., Completeness of Floyd Logic, Bull. Section of Logic Wroclaw (1978), Vol 7, No 3, pp.115–121.Google Scholar
  3. [3]
    Andréka, H. Németi, I. Sain, I., A complete logic for reasoning about programs via nonstandard model theory, Theoret. Comput. Sci., Vol 17(1982) Part I in No 2, pp.193–212, Part II in No 3.Google Scholar
  4. [4]
    Andréka, H. Németi, I. Sain, I., A complete first order dynamic logic, Preprint, Math.Inst.H.A.S., Budapest, 1980. No.810930.120p.Google Scholar
  5. [5]
    Andréka, H. Németi, I. Sain, I., Henkin-type semantics for program schemes to turn negative results to positive, Fundamentals of Computation Theory'79 (Proc.Conf.Berlin 1979), Ed. L. Budach, Akademie Verlag, Berlin, 1979. Band 2. pp.18–24.Google Scholar
  6. [6]
    Andréka, H. Németi, I. Sain, I., A characterization of Floyd-provable programs, In: Mathematical Foundations of Computer Science '81 (Strbské Pleso, Czechoslovakia, 1981), Lecture Notes in Computer Science 118, Springer, Berlin, 1981. pp.162–171.Google Scholar
  7. [7]
    Burstall, R.M., Program proving as hand simulation with a little induction. IFIP Congress, Stockholm, August 3–10, 1974.Google Scholar
  8. [8]
    Chang, C.C., Keisler, H.J., Model theory, North-Holland, 1973.Google Scholar
  9. [9]
    Csirmaz, L., A survey of semantics of Floyd-Hoare derivability, CL&CL — Comput.Linguist, Comput.Lang, 14(1980), pp.21–42.Google Scholar
  10. [10]
    Csirmaz,L., On the completeness of proving partial correctness, Acta Cybernet., Tom 5, Fasc 2, Szeged, 1981. pp.181–190.Google Scholar
  11. [11]
    Csirmaz, L. Paris, J.B., A property of 2-sorted Peano models and program verification, Preprint, Budapest, 1981.Google Scholar
  12. [12]
    Gabbay, D. Pnueli, A. Shelah, S. Stavi, J., On the temporal analysis of fairness, Preprint, Weizmann Inst. of Sci., Dept. of Applied Math., Israel, May 1981.Google Scholar
  13. [13]
    Gergely, T. Ury, L., Time models for programming logics, In: Mathematical Logic in Computer Science (Proc.Coll. Salgótartján 1978), Colloq.Math.Soc.J.Bolyai Vol 26, North-Holland 1981, pp.359–427.Google Scholar
  14. [14]
    Hájek, P., Making dynamic logic first-order, In: Mathematical Foundations of Computer Science '81 (Strbské Pleso, Czechoslovakia, 1981) Lecture Notes in Computer Science 118, Springer, Berlin, 1981.Google Scholar
  15. [15]
    Henkin, L. Monk, J.D. Tarski, A. Andréka, H. Németi I., Cylindric Set Algebras, Lecture Notes in Mathematics 883, Springer-Verlag, Berlin, 1981. V+323p.Google Scholar
  16. [16]
    Kfoury, D.J. Park, D.M.R., On the termination of program schemes, Information and Control 29(1975), pp.243–251.Google Scholar
  17. [17]
    Manna, Z. Waldinger, R., Is "Sometime" sometimes better than "Always"? Intermittent assertions in proving program correctness, Prerint, Stanford Research Inst., Menlo Park, June 1976, No. Z173.Google Scholar
  18. [18]
    Mirkowska, G., PAL — Propositional Algorithmic Logic, In: Logics of Programs, Lecture Notes in Computer Science 125, Springer-Verlag, Berlin, 1981. pp.23–101.Google Scholar
  19. [19]
    Monk,J.D., Mathematical Logic, Springer Verlag, 1976.Google Scholar
  20. [20]
    Németi,I., Nonstandard runs of Floyd-provable programs, this volume.Google Scholar
  21. [21]
    Németi, I., Hilbert style axiomatization of nonstandard dynamic logic, Preprint, Budapest, 1980.Google Scholar
  22. [22]
    Németi, I., Results on the lattice of dynamic logics, Preprint, Math. Inst. H.A.S., Budapest, 1981.Google Scholar
  23. [23]
    Németi,I., Nonstandard dynamic logic, In: Proc. Workshop on Logics of Programs (May 1981, New York) Ed.: D.Kozen, Lecture Notes in Computer Science, Springer-Verlag, to appear.Google Scholar
  24. [24]
    Németi, I., Dynamic algebras of programs, In: Fundamentals of Computation Theory'81 Proc.(Szeged 1981) Lecture Notes in Computer Science 117, Springer-Verlag, Berlin, 1981. pp.281–290.Google Scholar
  25. [25]
    Parikh, R., Propositional dynamic logics of programs: A survey, In: Logics of Programs, Lecture Notes in Computer Science 125, Springer-Verlag, Berlin, 1981. pp.102–141.Google Scholar
  26. [26]
    Richter,M.M. Szabo,M.E., Towards a nonstandard analysis of programs, In: Proc. of the Second Victoria Symp. on nonstandard analysis, Victoria, Britisch Columbia, June 1980. Ed. A.Hurd, Lecture Notes in Math., Springer Verlag, 1981.Google Scholar
  27. [27]
    Sain, I., There are general rules for specifying semantics: Observations on Abstract Model Theory, CL&CL — Comput.Linguist. Comput.Lang., 13(1979), pp.251–282.Google Scholar
  28. [28]
    Sain, I., First order dynamic logic with decidable proofs and workeable model theory, In: Fundamentals of Computation Theory '81 (Szeged, Hungary 1981), Lecture Notes in Computer Science 117, Springer, Berlin, 1981. pp.334–340.Google Scholar
  29. [29]
    Stavi,J., Compactness properties of infinitary and abstract languages, In: Logic Colloquiu'77, Ed.s A.Macintyre, L.Pacholski, J.Paris,. North-Holland 1978, pp.263–275.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • H. Andréka
    • 1
  1. 1.Math. Inst. Hungar. Acad. Sci., BudapestHungary

Personalised recommendations