Large scale behavior of equilibrium time correlation functions for some stochastic ising models

  • Herbert Spohn
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 173)


Correlation Function Gibbs State Time Correlation Function Gaussian Random Field Jump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Benjamin, Reading, Mass., 1975.Google Scholar
  2. 2).
    P. Resibois, M. DeLeener, Classical Kinetic Theory of Fluids. John Wiley, New York, 1977.Google Scholar
  3. 3).
    R. Glauber, J. Math. Phys. 4, 294 (1963).Google Scholar
  4. 4).
    T.M. Liggett, The Stochastic Evolution of Infinite Systems of Interacting Particles. Lecture Notes in Mathematics 598, Springer, Berlin, 1977.Google Scholar
  5. 5).
    R. Zwanzig, Statistical Mechanics of Irreversibility. In: Lectures in Theoretical Physics, vol. 3 (Boulder Lectures), Interscience, New York, 1961.Google Scholar
  6. 6).
    H. Mori, Progr. Theor. Phys. 34, 423 (1965).Google Scholar
  7. 7).
    R.A. Holley, D.W. Stroock, Comm. Math. Phys. 48, 249 (1976).Google Scholar
  8. 8).
    R.A. Holley, D.W. Stroock, Z. fur Wahrscheinlichkeits theorie verw. Gebiete 35, 87 (1976).Google Scholar
  9. 9).
    P. Clifford, A. Sudbury, Biometrika 60, 581 (1973).Google Scholar
  10. 10).
    R.A. Holley, T.M. Liggett, Annals of-Prob. 3, 643 (1975).Google Scholar
  11. 11).
    M. Bramson, D. Griffeath, Annals of Prob. 7, 418 (1978).Google Scholar
  12. 12).
    R.A. Holley, D.W. Stroock, Annals of Math. 110, 333 (1979).Google Scholar
  13. 13).
    E. Presutti, H. Spohn, Hydrodynamics of the Voter Model, preprint.Google Scholar
  14. 14).
    K. Kawasaki, Phys. Rev. 142, 164 (1966).Google Scholar
  15. 15).
    K. Kawasaki, Kinetics of sing Models. In: Phase Transitions and Critical Phenomena. Eds. C. Domb, M. Green, vol. 2. Academic Press, New York, 1972.Google Scholar
  16. 16).
    K. Binder, M.H. Kalos, J.L. Lebowitz and J. Marro, Advances in Coloid and Interface Science 10, 173 (1979).Google Scholar
  17. 17).
    W. Dietrich, P. Fulde, I. Peschel, Adv. Phys. 29, 527 (1980).Google Scholar
  18. 18).
    H. Singer, I. Peschel, Z. Physik B39, 333 (1980).Google Scholar
  19. 19).
    . Galves, C. Kipnis, H. Spohn, Fluctuation theory for the symmetric simple exclusion process, preprint in preparation.Google Scholar
  20. 20).
    A.GaIves, C. Kipnis, C. Marchioro, E. Presutti, Comm. Math. Phys. 81, 127 (1981).Google Scholar
  21. 21).
    O.E. Lanford, Time Evolution of Large Classical Systems. In: Dynamical Systems, Theory and Applications, ed. J. Moser. Lecture Notes in Physics 38, Springer, Berlin, 1975.Google Scholar
  22. 22).
    C. Marchioro, A. Pelligrinotti, E. Presutti, Comm. Math. Phys. 40, 175 (1975). 23)E. Presutti, M. Pulvirenti, B. Tirozzi, Comm. Math. Phys. 47, 81 (1976).Google Scholar
  23. 24).
    H. Spohn, Annals of Physics, in press.Google Scholar
  24. 25).
    C. Boldrighini, R.L. Dobrushin, Yu.M. Sukhov, Hydrodynamics of one-dimensional hard rods, preprint.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Herbert Spohn
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations