Momentum-position complementarity in stochastic mechanics

  • Francesco Guerra
  • Laura Morato
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 173)


Stochastic Differential Equation Uncertainty Principle Stochastic Mechanic Complementarity Principle Classical Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    E.Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J., 1967.Google Scholar
  2. /2/.
    F.Guerra, Structural Aspects of Stochastic Mechanics and Stochastic Field Theory, Physics Reports, 77,263 (1981).Google Scholar
  3. /3/.
    B.Simon, The P( ϕ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, N.J., 1974.Google Scholar
  4. /4/.
    J.Glimm and A.Jaffe, Quantum Physics, Springer-Verlag,Berlin,1981.Google Scholar
  5. /5/.
    M.Creutz, L.Jacobs and C.Rebbi, Experiments with a Gauge Invariant Ising Model, Phys.Rev.Lett.,42,1390 (1979).Google Scholar
  6. /6/.
    E.Marinari,G.Parisi and C.Rebbi, Computer Estimates of Meson Masses in SU(2) Lattice Gauge Theory,Phys.Rev.Lett.,47,1795 (1981), and references quoted there.Google Scholar
  7. /7/.
    Ph.Combe,R.Rodrigvez,R.HØegh-Krohn,M.Sirugue and M.Sirugue-Collin, Generalized Poisson Processes in Quantum Mechanics and Field Theory, Physics Reports, 77, 221 (1981).Google Scholar
  8. /8/.
    D.S.Shuker, Stochastic Mechanics of Systems with Zero Potential, J.Funct.Anal. 38, 146 (1980).Google Scholar
  9. /9/.
    D. de Falco, S.De Martino and S.De Siena, Position-Momentum Uncertainty Relations in Stochastic Mechanics, University of Salerno Preprint, 1982.Google Scholar
  10. /10/.
    F.Guerra and M.I.Loffredo, Thermal Mixtures in Stochastic Mechanics, Lettere al Nuovo Cimento 30, 81 (1981).Google Scholar
  11. /11/.
    F.Guerra and P.Ruggiero, New Interpretation of the EuclideanMarkov Field in the Framework of Physical Space-Time, Phys.Rev.Lett. 31, 1022 (1973).Google Scholar
  12. /12/.
    P.Ruggiero and M.Zannetti, Stochastic Description of the Quantum Thermal Mixture, Phys.Rev.Lett. 48, 963 (1982).Google Scholar
  13. /13/.
    F.Guerra and M.I.Loffredo, Stochastic Equations for the Maxwell Field, Lettere al Nuovo Cimento 27, 41 (1980).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Francesco Guerra
    • 1
  • Laura Morato
    • 2
  1. 1.Istituto Matematico “G.Castelnuovo”Universitá di RomaRoma
  2. 2.Istituto di Elettrotecnica ed ElettronicaUniversitá di Padova and LADSEB-CNRPadova

Personalised recommendations