Advertisement

The diffusion equation and classical mechanics: An elementary formula

  • K. D. Elworthy
  • A. Truman
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 173)

Keywords

Thermodynamic Limit Path Integral Schr6dinger Equation Feynman Path Integral Wiener Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albeverio, S. & Hoegh-Krohn, R. (1977). Oscillatory integrals and the method of stationary phase in infinitely many dimensions with applications to the classical limit of quantum mechanics I. Invent. Mathem., 40, 59–106.Google Scholar
  2. Azencott, R. et al. (1981). Géodésiques et diffusions en temps petit. Séminaire de probabilités, Université de Paris VII. Astérique 84–85 Société mathématique de france.Google Scholar
  3. Van den Berg, M. & Lewis, J.T. (1981). On the free Bose gas in a weak external potential. Comm. Math. Phys., 81, 475–494.Google Scholar
  4. Berger, M., Gauduchon, P. & Mazet, E. (1971). Le Spectre d'une Variété Riemannienne. Lecture Notes in Math. 194. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  5. Besse, A.-L. (1978). Manifolds all of whose Geodesics are closed. Ergebnisse der Mathematik 93. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  6. DeWitt-Morette, C., Maheshwari, A., & Nelson, B. (1979). Path integration in non-relativisitic quantum mechanics. Physics Reports, 50, no. 5, 255–372. Amsterdam: North-Holland.Google Scholar
  7. Elworthy, K.D. (1978). Stochastic dynamical systems and their flows. In Stochastic Analysis, ed. A. Friedman & M. Pinsky, 79–95. London, New York: Academic Press.Google Scholar
  8. Elworthy, K.D. (1982). Stochastic Differential Equations on Manifolds. London Math. Soc. Lecture Notes in Mathematics. Cambridge University Press (to appear: Autumn 1982)Google Scholar
  9. Elworthy, K.D. & Truman, A. (1981). Classical mechanics, the diffusion (heat) equation and the Schrödinger equation on a Riemannian manifold. J. Math. Phys. 22, no. 10, 2144.Google Scholar
  10. Hopf, E. (1950). The partial differential equation ut + uux = uuxx. Comm. Pur. Appl. Math., 3, 201–230.Google Scholar
  11. Ikeda, N. & Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. Tokyo: Kodansha. Amsterdam, New York, Oxford: North-Holland.Google Scholar
  12. Malliavin, P. (1978). Géométrie Differentielle Stochastique. Séminaire de Mathématiques Supérieures. Université de Montreal.Google Scholar
  13. Molchanov, S.A., (1975). Diffusion processes and Riemannian geometry. Usp. Math. Nauk, 30, 3–59. English translation: Russian Math. Surveys, 30, 1–63.Google Scholar
  14. Pinsky, M. (1978). Stochastic Riemannian geometry. In Probabilistic Analysis and Related Topics, 1, ed. A.T. Bharucha Reid, London, New York: Academic Press.Google Scholar
  15. Pulè, J. (1982). Free Bose gas in a weak external potential. Journ. Math. Phys. to appear.Google Scholar
  16. Schilder, M. (1965). Some asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125, 63–85.Google Scholar
  17. Simon, B. (1979). Functional Integration and Quantum Physics. London, New York: Academic Press.Google Scholar
  18. Truman, A. (1977). Classical mechanics, the diffusion (heat) equation, and the Schrödinger equation. J. Math. Phys., 18, 2308–2315.Google Scholar
  19. Varadhan, S.R.S. (1966). Asymptotic probabilities and differential equations. Comm. Pure Appl. Math., 19, no. 3, 261–286.Google Scholar
  20. Yau, S.-T. (1978). On the heat kernel of a complete Riemannian manifold. J. Math. pures et appl., 57, 191–201.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • K. D. Elworthy
    • 1
  • A. Truman
    • 2
  1. 1.Mathematics InstituteUniversity of WarwickCoventry
  2. 2.Department of MathematicsEdinburgh

Personalised recommendations