All that Brownian motion

  • D. Dürr
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 173)


I shall present here some recent results in the mathematical rigorous study of nonequilibrium statistical mechanics. These results have been obtained in collaboration with S.Goldstein and J.L.Lebowitz.


Brownian Motion Markov Process Collision Rate Weak Coupling Limit Uhlenbeck Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. |1|.
    F. Spitzer, J.Math.Mech. 18, 973 (1969).Google Scholar
  2. |2|.
    D. Dürr, S. Goldstein, and J.L. Lebowitz, Commun.Math.Phys. 78, 507 (1981).Google Scholar
  3. |3|.
    D. Dürr, S. Goldstein, and J.L. Lebowitz, The Landau Model in dimensions greater or equal than two. In preparation.Google Scholar
  4. |4|.
    De Lenner and Resibois, Kinetic Theory of Fluids, John Wiley,1978.Google Scholar
  5. |5|.
    H. Kesten and G. Papanicolaou, Commun.Math.Phys. 78, 19 (1981).Google Scholar
  6. |6|.
    Th. Kurtz, Ann.Probab. 4, 618 (1975).Google Scholar
  7. |7|.
    P. Billingsley, Convergence of probability measures, New York: John Wiley and Sons 1968.Google Scholar
  8. |8|.
    R. Holley, Z. Wahr. Verw. Geb. 17, 181 (1971).Google Scholar
  9. |9|.
    D. Dürr, S. Goldstein, and J.L. Lebowitz, A mechanical model for the Brownian motion of a convex body. In preparation.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • D. Dürr
    • 1
  1. 1.Institut für Mathematik Ruhr-Universität Bochum463 BochumWest-Germany

Personalised recommendations