The Van Hove limit in classical and quantum mechanics

  • G. F. Dell'Antonio
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 173)


Classical Case Classical Limit Random Potential Gaussian Random Field Contraction Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    D. Hall, P. Sturrok Phys. Fluids 10 2620 (67)Google Scholar
  2. 1b.
    N. Shapiro JETP letters 2 291 (65)Google Scholar
  3. 1c.
    N. Van Kampen Phys. Rep. 24 171 (76)Google Scholar
  4. 2.
    L. Van Hove Physica 21 517 (55) 23 441 (57)Google Scholar
  5. 3.
    G. Emch, P. Martin Helv. Phys. Acta 48 59 (75)Google Scholar
  6. 4.
    H. Spohn J. Stat. Physics 17 6 (77)Google Scholar
  7. 5.
    G. Papanicolau, S. Varadhan Comm.Pure Applied Math. 26 497 (73)Google Scholar
  8. 5a.
    E. Davies Comm. Math. Phys.,39 91 (74)Google Scholar
  9. 6.
    H. Kesten, G. Papanicolau Comm. Math. Phys. 78 19 (80)Google Scholar
  10. 7.
    G. F. Dell'Antonio Submitted to Comm. Math. Phys.Google Scholar
  11. 8.
    PH Combe et al Poisson processes on groups and the Feynmann Integral Prepint Marseille 1979Google Scholar
  12. 9.
    M. Donsker, S. Varadhan Comm. Pure Applied Math 28 1 (75)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. F. Dell'Antonio
    • 1
  1. 1.Istituto Matematico G. CastelnuovoUniv. di RomaItaly

Personalised recommendations