The metal-nonmetal transition in ionic liquids

  • W. W. WarrenJr.
I. Ionic Liquids and Molten Salts
Part of the Lecture Notes in Physics book series (LNP, volume 172)


The metal-nonmetal transition in ionic liquids is reviewed with special emphasis on alkali metal-alkali halide solutions and the ionic alloy Cs-Au. Magnetic measurements, especially nuclear magnetic resonance, are discussed in relation to the nature of localized electronic states at low concentrations of excess metal and electron dynamics in the metal-nonmetal transition region. It is suggested that the stability of non-magnetic species governs the occurrence of a continuous metal-nonmetal transition or, alternatively, liquid-liquid phase separation.


Nuclear Magnetic Resonance Electron Spin Resonance Ionic Liquid Relaxation Rate Excess Electron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Bredig, in Molten Salt Chemistry, ed. M. Blander (Interscience, New York, 1964) p. 367.Google Scholar
  2. 2.
    N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).Google Scholar
  3. 3.
    M. Cutler, Liquid Semiconductors (Academic Press, New York, 1977).Google Scholar
  4. 4.
    W. W. Warren, Jr. in Advances in Molten Salt Chemistry, Vol. 4, ed. G. Mamantov and J. Braunstein (Plenum, New York, 1981) p. 1.Google Scholar
  5. 5.
    H. Yokokawa, O. J. Kleppa, and N. H. Nachtrieb, J. Chem. Phys. 71, 4099 (1979).Google Scholar
  6. 6.
    H. Yokokawa and O. J. Kleppa, J. Chem. Phys. 76, 5574 (1982).Google Scholar
  7. 7.
    V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liquid Semiconductors (Plenum, New York, 1969).Google Scholar
  8. 8.
    M. Hansen nd K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1959) 2nd edition.Google Scholar
  9. 9.
    R. P. Elliott, Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965).Google Scholar
  10. 10.
    F. A. Shunk, Constitution of Binary Alloys, Second Supplement (McGraw-Hill, New York, 1969).Google Scholar
  11. 11.
    H. R. Bronstein, A. S. Dworkin, and M. A. Bredig, J. Chem. Phys. 31, 677 (1962).Google Scholar
  12. 12.
    N. H. Nachtrieb, C. Hsu, M. Sosis, and P. A. Bertrand, in Proceedings of the International Symposium on Molten Salts, ed. J. P. Pemsler, J. Braunstein, and K. Nobe (Electrochemical Society, Princeton, 1976) p. 506.Google Scholar
  13. 13.
    A. Klemm, in Molten Salt Chemistry, ed. M. Blander (Interscience, New York, 1964) p. 535.Google Scholar
  14. 14.
    J. D. Corbett, in Fused Salts, ed. B. Sundheim (McGraw-Hill, New York, 1964) Chap. 6.Google Scholar
  15. 15.
    N. H. Nachtrieb, J. Phys. Chem. 66, 1163 (1962).Google Scholar
  16. 16.
    M. Bettman, J. Chem. Phys. 44, 3254 (1966).Google Scholar
  17. 17.
    R. H. Arendt and N. H. Nachtrieb, J. Chem. Phys. 53, 3085 (1970).Google Scholar
  18. 18.
    G. Steinleitner, Dissertation (U. Marburg, 1978).Google Scholar
  19. 19.
    N. Nicoloso, Dissertation (U. Marburg, 1982).Google Scholar
  20. 20.
    W. Freyland and G. Steinleitner, Ber. Bunsenges, Phys. Chem. 80, 810 (1976).Google Scholar
  21. 21.
    M. Sosis, Thesis (J. Franck Institute, U. Chicago, 1974).Google Scholar
  22. 22.
    P. A. Bertrand, Thesis (J. Franck Institute, U. Chicago, 1978).Google Scholar
  23. 23.
    See, for example, A. Abragam, The Principles of Nuclear Magnetism (Oxford, London, 1961).Google Scholar
  24. 24.
    S. Sotier and W. W. Warren, Jr., J. Physique 41, C8–40 (1980).Google Scholar
  25. 25.
    W. W. Warren, Jr. and S. Sotier, in Proc. Third Int. Symposium on Molten Salts, ed. G. Mamantov, M. Blander, and G. P. Smith (The Electrochemical Society, Princeton, 1981) p. 95.Google Scholar
  26. 26.
    R. Dupree, D. Kirby, W. Freyland, and W. W. Warren, Jr. Phys. Rev. Lett. 45, 130 (1980).Google Scholar
  27. 27.
    R. Dupree, D. J. Kirby, W. Freyland, and W. W. Warren, Jr., J. Physique 41, C8–16 (1980).Google Scholar
  28. 28.
    J. M. Ziman, Phil Mag. 6, 1013 (1961).Google Scholar
  29. 29.
    J. Korringa, Physica 16, 601 (1950).Google Scholar
  30. 30.
    A. F. Ioffe and A. R. Regel, Progr. Semicond. 4, 239 (1960).Google Scholar
  31. 31.
    M. H. Cohen, J. Non-Cryst. Solids 4, 391 (1970).Google Scholar
  32. 32.
    W. W. Warren, Jr., Phys. Rev. B3, 3708 (1971).Google Scholar
  33. 33.
    P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).Google Scholar
  34. 34.
    K. S. Pitzer, J. Am. Chem. Soc. 84, 2025 (1962).Google Scholar
  35. 35.
    L. V. Woodcock, Nature (Phys. Sci) 232, 63 (1971).Google Scholar
  36. 36.
    E. Mollwo, Nachr. Gesell. Wiss. Gottingen, Math-Physik K., Fachgruppe II, 1:203 (1935).Google Scholar
  37. 37.
    D. M. Gruen, M. Krupelt, and I. Johnson, in Molten Salts, Characterization and Analysis, ed. G. Mamantov (Dekker, New York, 1969) p. 169.Google Scholar
  38. 38.
    J. F. Rounsaville and J. J. Lagowski, J. Phys. Chem. 72, 1111 (1968).Google Scholar
  39. 39.
    H.-J. Yuh, Thesis (U. Chicago, 1981).Google Scholar
  40. 40.
    G. Senatore, M. Parrinello, and M. Tosi, Phil, Mag. 41, 595 (1980).Google Scholar
  41. 41.
    H. Seidel and H. C. Wolf, in Physics of Color Centers, ed. W. B. Fowler (Academic Press, New York, 1964) p. 109.Google Scholar
  42. 42.
    H. R. Bronstein and M. A. Bredig, J. Am. Chem. Soc. 80, 2077 (1958).Google Scholar
  43. 43.
    I. Katz and S. A. Rice, J. Am. Chem. Soc. 94, 4824 (1972).Google Scholar
  44. 44.
    P. J. Durham and D. A. Greenwood, Phil Mag. 33, 427 (1976).Google Scholar
  45. 45.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).Google Scholar
  46. 46.
    S. Sotier and W. W. Warren, Jr. (unpublished).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • W. W. WarrenJr.
    • 1
  1. 1.Bell LaboratoriesMurray Hill

Personalised recommendations