Advertisement

Mott trasition in liquid gold-alkali alloys

  • F. Brouers
  • C. Holzhey
  • J. R. Franz
  • W. Schirmacher
I. Ionic Liquids and Molten Salts
Part of the Lecture Notes in Physics book series (LNP, volume 172)

Abstract

By incorporating calculated liquid pair correlation functions into a tight binding model for the electronic structure of binary liquid alloys, we have developed a self consistent theory of the electronic and atomic structure of liquid alloys. Model calculations for the gold-alkali systems show the existence of a gap in the density of states if the ratio of the electronegativity -difference to the mean overlap integral exceeds a certain value.

For alloy exhibiting a gap, a metal non-metal transition occurs for concentrations in the neighbourhood of stochiometry. This metal nonmetal transition occurs for values of the atomic parameters lying between those of AuK and AuRb, in agreement with experimental results.

In the present paper we discuss how this Mott transition is related to electron correlations. The screening plays an important role and is governed by the electron density.

Keywords

Hard Sphere Liquid Alloy Mott Transition Cayley Tree Thomas Fermi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft N W and Langreth D C 1967 Phys. Rev. 156 685–692Google Scholar
  2. Brouers F, Lederer P and Heritier M 1973 Amorphous Magnetism ed. H O Hooper and A M de Graaf (N.Y. Plenum) pp 151–8Google Scholar
  3. Brouers F and Franz J R will be publishedGoogle Scholar
  4. Copestake A and Evans R 1981 private communicationGoogle Scholar
  5. Dupree R, Kirby D J, Freyland W and Warren W W Jr 1980 Phys. Rev. Letters 45 130–33Google Scholar
  6. Enderby J E 1978 The Metal Non-Metal Transition in Disordered Systems (Proc. 19th Scottish Univ. Summer School in Physics) ed. L R Friedman and D P Tunstall (Edinburgh: University of Edinburgh)Google Scholar
  7. Evans R and Telo da Gama M M 1980 Phil. Mag. B 41 351–56Google Scholar
  8. Falicov. L M and Yndurain F 1975 Phys. Rev. B 12 5664–75Google Scholar
  9. Franz J R, Brouers F and Holzhey C 1980 J. Phys. F: Met. Phys. 10 235–52Google Scholar
  10. Franz J R, Brouers F and Holzhey C 1982 will be publishedGoogle Scholar
  11. Freyland W and Steinleitner G 1976 Ber. Bundesges. Phys. Chem. 80 810–5Google Scholar
  12. Giner J, Brouers F, Gautier F and van der Rest J 1976 J. Phys. F Met. Phys. 6 1281–89Google Scholar
  13. Hensel F 1979 Adv. Phys. 28 555–94Google Scholar
  14. Holzhey C, Brouers F and Franz J R 1981 J. Phys. F: Met. Phys. 11 1947–53Google Scholar
  15. Holzhey C, Brouers F, Franz J R and Schirmacher W 1982 will be published in J. Phys. FGoogle Scholar
  16. Holzhey C 1982 Doktorarbeit F.U. BerlinGoogle Scholar
  17. Hoshino H, Schmutzler R W and Hensel F 1975 Phys. Lett. 51 A 7Google Scholar
  18. Krüger K D, Fischer R and Schmutzler R W 1977 Inst. Phys. Conf. Ser. 30 480–7Google Scholar
  19. Littlewood P B 1981 Phys. Rev. B 24 1710–14Google Scholar
  20. Münster P and Freyland W 1979 Phil. Mag. B 39 93Google Scholar
  21. Nicoloso N, Schmutzler R W and Hensel F 1978 Ber. Bunsenges. 82 621Google Scholar
  22. Ruppersberg H and Reiter W 1981 will be publishedGoogle Scholar
  23. Waisman E 1973 Molec. Phys. 25 45–48Google Scholar
  24. Waisman E and Lebowitz J L 1972 J. Chem. Phys. 56 3086–93; 3093–4309Google Scholar
  25. Warren W W jun. 1979 “Advances in Molten Salt Chemistry”, Vol.4 Ed. J Braunstein et al. (Plenum Press)Google Scholar
  26. Ziman J M 1964 Principles of the theory of solids, Cambridge University Press p.144Google Scholar
  27. Schirmacher W 1980 J. Non-Cryst. Solids, 35–36 1301–6Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • F. Brouers
    • 1
  • C. Holzhey
    • 1
  • J. R. Franz
    • 2
  • W. Schirmacher
    • 3
  1. 1.Freie Universität Berlin, Fachbereich Physik (WE5)Berlin 33West Germany
  2. 2.Department of PhysicsIndiana UniversityBloomingtonIndiana
  3. 3.Physik Dept. E 13Technische Universität MünchenGarchingWest Germany

Personalised recommendations