Advertisement

8Li SPIN-Lattice relaxation in the liquid alloys Li-Bi and Li-Pb

  • G. Kiese
  • P. Heitians
  • H. Ackermann
  • B. Bader
  • W. Buttler
  • P. Freiländer
  • C. van der Marel
  • H. Ruppersberg
  • H. -J. Stöckmann
I. Ionic Liquids and Molten Salts
Part of the Lecture Notes in Physics book series (LNP, volume 172)

Abstract

The nuclear spin-Lattice relaxation rate T 1 −1 of β-active 8Li (T1/2 = 0.8 s) has been measured in Liquid Li-Bi and Li-Pb alloys. T1−1 as function of concentration and temperature shows marked deviations from metaLLic behaviour near the compositions Li3Bi and Li4Pb. Combining the relaxation data with Knight shift and/or conductivity data the mean ‘residence time’ τe of the conduction electrons at a nuclear site and the density of states at the Fermi surface N(EF) are obtained relative to the free-electron values. The results show that in Liquid Li-Bi the tendency towards electron Localization and compound formation is significantly stronger than in Li-Pb. The melt Li0.8Pb0.2 seems to become metallic above 1400 K.

Keywords

Relaxation Rate Fermi Surface Knight Shift Nuclear Site Total Magnetic Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    For reviews see: F. Hensel, Adv. Phys. 28, 555 (1979); W.W. Warren, in Advances in Molten Salt Chemistry, Vol. 4, edited by J. Braunstein, G. Mamantov, and G.P. Smith (New York, Plenum Press 1980)Google Scholar
  2. /2/.
    H. Ruppersberg, H. Egger, J.Chem.Phys. 63, 4095 (1975)Google Scholar
  3. /3/.
    M. Soltwisch, D. Quitmann, H. Ruppersberg, J.B. Suck, Phys.Lett. 86A, 241 (1981)Google Scholar
  4. /4/.
    P. Heitjans, G. Kiese, H. Ackermann, B. Bader, W. Buttler, K. Dörr, F.Fujara, H. Grupp, A. Körblein, H.-J. Stöckmann, J. Physique 41, C8–409, (1980)Google Scholar
  5. /5/.
    C. van der Marel, W. Geertsma, W. van der Lugt, J. Phys. F10, 2305 (1980)Google Scholar
  6. /6/.
    J. KorringaZ, Physica 16, 601 (1950)Google Scholar
  7. /7/.
    W.W. Warren, Phys.Rev. B3, 3708 (1971)Google Scholar
  8. /8/.
    H. Ackermann, Hyperfine Interactions 4, 645 (1978)Google Scholar
  9. /9/.
    P. Heitjans, A. Körblein, H. Ackermann, D. Dubbers, F. Fujara, M. Grupp, H.-J. Stöckmann, Proc. 19th Congr. Ampere, Heidelberg, 1976 p. 281Google Scholar
  10. /10/.
    N.H. Nachtrieb, Ber. Bunsenges.Phys.Chem. 80, 678 (1976)Google Scholar
  11. /11/.
    A. Narath, H.T. Weaver, Phys.Rev. 175, 373 (1968)Google Scholar
  12. /12/.
    V.T. Nguyen, J.E. Enderby, Phil.Mag. 35, 1013 (1977)Google Scholar
  13. /13/.
    See e.g.: N.F. Mott, E.A. Davis, Electronic processes in noncrystaLLine materials (Oxford, Clarendon Press 1979)Google Scholar
  14. /14/.
    H. Ruppersberg, W. Speicher, Z.Naturf. 31a, 47 (1976)Google Scholar
  15. /15/.
    C. van der Marel, Thesis, Groningen 1981Google Scholar
  16. /16/.
    K. Hackstein, Thesis, München 1980Google Scholar
  17. /17/.
    G. Steinleitner, W. Freyland, F. Hensel, Ber. Bunsenges.Phys.Chem. 79, 1186 (1976)Google Scholar
  18. /18/.
    R. Avci, C.P. Flynn, Phys.Rev. B19, 5967 (1979)Google Scholar
  19. /19/.
    B. Predel, G. Oehme, Z. Metallkde 70, 450 (1979)Google Scholar
  20. /20/.
    B. Predel, G. Oehme, Z. Metallkde 70, 618 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Kiese
    • 1
    • 2
  • P. Heitians
    • 1
    • 2
  • H. Ackermann
    • 1
    • 2
  • B. Bader
    • 1
    • 2
  • W. Buttler
    • 1
    • 2
  • P. Freiländer
    • 1
    • 2
  • C. van der Marel
    • 1
    • 2
  • H. Ruppersberg
    • 1
    • 2
    • 3
  • H. -J. Stöckmann
    • 1
    • 2
  1. 1.Fachbereich PhysikUniv. MarburgW.-Germany
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.Fachbereich Angewandte PhysikUniv. SaarbrückenW.-Germany

Personalised recommendations