Charge ordering in molten salts and in some liquid semiconducting alloys

  • A. P. Copestake
  • R. Evans
I. Ionic Liquids and Molten Salts
Part of the Lecture Notes in Physics book series (LNP, volume 172)


We summarize the main results of our study of ‘charge-ordering’ in chargedhard sphere models of molten salts and liquid semiconductors.We demonstrate that provided the attraction between unlike species is strong, very short-ranged screened interionic potentials can produce partial structure factors and radial distribution functions which are very close to those found in molten alkali. halides. It is the behaviour of the charge-charge or, equivalently, the concentration-concentration structure factor Scc(k) at small k which provides the most direct information about the strength and range of the interionic potentials. We discuss, briefly, a calculation of Scc(k) in liquid Li4Pb.


Molten Salt Radial Distribution Function Interatomic Potential Yukawa Potential Interionic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Enderby and G.W. Neilson, 1980, Adv. Phys., 29, 323.Google Scholar
  2. 2.
    M. Parrinello and M.P. Tosi, 1979, Riv. Nuovo Cim 2, 1.Google Scholar
  3. 3.
    R. Evans and M.M. Telo da Gama, 1980, Phil. Mag., 41, 351.Google Scholar
  4. 4.
    A.P. Copestake, R. Evans and M.M. Telo da Gama, 1980, J. de Physique, 41, Coll. 8, 321.Google Scholar
  5. 5.
    J.E. Enderby, 1978, in ‘The Metal Non-Metal Transition in Disordered Systems', eds. L.R. Friedman and D.P. Tunstall (University of Edinburgh Press), pg. 425.Google Scholar
  6. 6.
    P. Chieux and H. Ruppersberg, 1980, J. de Physique, 41, Coll. 8, 145.Google Scholar
  7. 7.
    F. Hensel, 1979, Adv. Phys., 28, 555.Google Scholar
  8. 8.
    W. Martin, W. Freyland, P. Lamparter and S. Steeb, 1980, Phys. Chem. Liquids, 10, 61.Google Scholar
  9. 9.
    Theories for charge-transfer and the electronic structure of Au-alkali alloys have been developed-see C. Holzhey, F. Brouers and J.R. Franz, 1981, J. Phys. F, 11, 1047 and references therein.Google Scholar
  10. 10.
    V.T. Nguyen and J.E. Enderby, 1977, Phil. Mag., 35, 1013.Google Scholar
  11. 11.
    C. van der Marel, A.B. van Oosten, W. Geertsma and W. van der Lugt, J. Phys. F (to appear).Google Scholar
  12. 12.
    C. van der Marel, W. Geertsma and W. van der Lugt, 1980, J. Phys. F., 10, 2305.Google Scholar
  13. 13.
    K. Hackstein, S. Sotier and E. Lüscher, 1980, J. de Physique, 41, Coll. 8, 49.Google Scholar
  14. 14.
    W. Schirmacher, 1980, J. Non-Cryst. Solids 35 and 36, 1301.Google Scholar
  15. 15.
    A.P. Copestake and R. Evans, 19"82, J. Phys. C., (to appear).Google Scholar
  16. 16.
    B. Larsen and S.A. Rogde, 1980, J. Chem. Phys., 72, 2578.Google Scholar
  17. 17.
    F.H. Stillinger and R. Lovett, 1968, J. Chem. Phys., 48, 3858. Ibid. 49, 1991.Google Scholar
  18. 18.
    H. Ruppersberg and H. Egger, 1975, J. Chem. Phys., 63, 4095.Google Scholar
  19. 19.
    H. Ruppersberg and H. Reiter, 1982, J. Phys. C. (to appear).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • A. P. Copestake
    • 1
  • R. Evans
    • 1
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK

Personalised recommendations