Matter, momentum and energy flow in heavy-ion collisions

  • M. Prakash
  • S. Shlomo
  • B. S. Nilsson
  • J. P. Bondorf
  • F. E. Serr
I. Time Dependent Hartree-Fock
Part of the Lecture Notes in Physics book series (LNP, volume 171)


We study the flow of matter, momentum and energy in low energy heavy-ion collisions. This is done by using the Wigner phase space distribution function to calculate quantum mechanical analogs of the classical distributions of the observables. We apply the Wigner transformation to time dependent Hartree-Fock calculations of 16O + 16O and 40Ca + 40Ca reactions. Both static and dynamic features of the distribution functions are demonstrated.


Harmonic Oscillator 40Ca Reaction Harmonic Oscillator Model Wigner Distribution Function Single Particle Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Wigner, Phys. Rev. 40 (1932) 749Google Scholar
  2. 2.
    G. F. Bertsch, Nucl. Phys. A249 (1975) 253; Many Body Dynamics of Heavy-Ion Collisions, in: Les Housches Lecture Notes, ed. R. Balian et al., (North-Holland, Amsterdam, 1978), pp. 178–262.Google Scholar
  3. 3.
    N. L. Balazs and G. G. Zipfel, Jr., Ann. Phys. 77 (1973) 139; N. L. Balazs and H. C. Pauli,Z.Phys.A281(1977)395;A277(1976)265.Google Scholar
  4. 4.
    P. Ring and P. Schuck, The Many-Body Problem (Springer-Verlag, New York, 1980) Chap. 13, and references therein.Google Scholar
  5. 4a.
    V. M. Kolomietz and H. H. K. Tang, Physica Scripta 24 (1981) 915.Google Scholar
  6. 4b.
    D. M. Brink and M. D. Toro, Nucl. Phys. A372 (1980) 151.Google Scholar
  7. 4c.
    C. Y. Wong, Phys. Rev. C25 (1982) 1460.Google Scholar
  8. 5.
    J Richert et al., Phys.Lett. 87B (1979); Nucl.Phys. A356 (1981) 260.Google Scholar
  9. 6.
    H. S. Köhler and H. Flocard, Nucl. Phys. A323 (1979)189; H. S. Köhler, Nucl. Phys. A343 (1980) 315.Google Scholar
  10. 7.
    H. H. K. Tang, et al., Phys. Lett. 101B (1981) 10.Google Scholar
  11. 8.
    S. Shlomo and M. Prakash, Nucl. Phys. A357 (1981) 157.Google Scholar
  12. 8a.
    J. Hüfner and M. C. Nemes, Phys. Rev. C23 (1981)2538.Google Scholar
  13. 9.
    S. E. Koonin, in Progress in Particle and Nuclear Physics, Vol.4, edited by D. Wilkinson (Pergamon, Oxford, 1980) pp. 283.Google Scholar
  14. 9a.
    S. E. Koonin, Ph.D. Thesis, 1975, Massachusetts Institute of Technology (unpublished).Google Scholar
  15. 10.
    M. Prakash et al., Nucl. Phys. A (in print).Google Scholar
  16. 11.
    M. Prakash, Phys. Rev. Lett. 47 (1981) 898.Google Scholar
  17. 12.
    M. Prakash et al., Nucl. Phys. A370 (1981) 898.Google Scholar
  18. 13.
    J. Randrup, Nucl. Phys.A307 (1978)319, and Ann.Phys. 112(1978)356.Google Scholar
  19. 14.
    C. M. Ko, Phys. Lett. 77B (1978) 174.Google Scholar
  20. 15.
    S. Shlomo and P. J. Siemens, to be published; G. Bertsch and O. Scholten, MSU preprint 1981.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Prakash
    • 1
  • S. Shlomo
    • 2
  • B. S. Nilsson
    • 3
  • J. P. Bondorf
    • 3
  • F. E. Serr
    • 4
  1. 1.Department of PhysicsState University of New York at Stony BrookStony BrookUSA
  2. 2.Department of Physics and Cyclotron Institute Texas A&M UniversityCollege StationUSA
  3. 3.The Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark
  4. 4.Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations