Advertisement

Beyond TDHF : Schrödinger time-evolution in a truncated subspace

  • H. Schultheis
  • R. Schultheis
  • A. B. Volkov
VII. Related Approaches
Part of the Lecture Notes in Physics book series (LNP, volume 171)

Abstract

We derive non-determinantalapproximations to the Schrödinger time-evolution in a necessarily truncated subspace, that allow for a flux of probability between the subspace and the excluded space.

A second-order time-differential equation in the subspace and a time-dependent optical potential are studied in a number of examples.

Keywords

Optical Model Optical Potential Substantial Flux Dinger Equation Subspace Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schultheis, R. Schultheis and A.B. Volkov, Phys.Lett. 39B (1980) 165Google Scholar
  2. 2.
    H. Schultheis, R. Schultheis and A.B. Volkov, Ann.Phys. (N.Y.) to be publishedGoogle Scholar
  3. 3.
    H. Feshbach, Topics in the Theory of Nuclear Reactions, in “Documents of Modern Physics“ (Gordon and Breach, New York, 1973) p. 171Google Scholar
  4. 4.
    H.J. Lipkin, Proc. of the Rutherford Jubilee Intern. Conf., Manchester, 1961 (Heywood, London, 1961) p. 275Google Scholar
  5. 5.
    A. Glick, H.J. Lipkin and N. Meshkov, Proc. of the Rutherford Jubilee Intern. Conf., Manchester, 1961 (Heywood, London, 1961) p. 299Google Scholar
  6. 6.
    H.J. Lipkin, N. Meshkov and A.J. Glick, Nucl. Phys. 62 (1965) 188Google Scholar
  7. 7.
    A.B. Volkov, Nucl.Phys. 43 (1963) 1Google Scholar
  8. 8.
    N. Austern, Ann.Phys. (N.Y.) 45 (1967) 113Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • H. Schultheis
    • 1
  • R. Schultheis
    • 1
  • A. B. Volkov
    • 2
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenWest Germany
  2. 2.Department of Physics McMaster University HamiltonOntarioCanada

Personalised recommendations