Advertisement

TDHF-like equations in field theory and condensed matter systems

  • David K. Campbell
VII. Related Approches
Part of the Lecture Notes in Physics book series (LNP, volume 171)

Abstract

We discuss qualitatively a number of examples of TDHF-like equations that have arisen in model field theories and in (more physically relevant) quasi-one-dimensional condensed matter systems. These examples illustrate several phenomena seen in the (technically much more complicated) applications to nuclear physics and offer a new and perhaps invigorating perspective on TDHF.

Keywords

Condensed Matter System Solid State Comm Model Field Theory Abnormal Nucleus Full Quantum Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and footnotes

  1. 1.
    D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).Google Scholar
  2. 2.
    W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett 42, 1698 (1979)Google Scholar
  3. 2a.
    — Phys. Rev. B22, 2099 (1980).Google Scholar
  4. 3.
    D. K. Campbell and Y.-T. Liao, Phys. Rev. D14, 2093 (1976).Google Scholar
  5. 4.
    R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D12 2443 (1975).Google Scholar
  6. 5.
    In one space dimension the Dirac y matrices can be represented by the Pauli matrices, a.. Note that, following the conventions in the literature, we use different representations for the y matrices in the Gross-Neveu model and in the continuum electron-phonon model of polyacetylene. Hence the components of the wave functions in the two cases are linear combinations of each other.Google Scholar
  7. 6.
    J. F. Schonfeld, Nucl. Phys. B95, 148 (1975); R. G. Root, Phys. Rev. D11, 831 (1975).Google Scholar
  8. 7.
    T. D. Lee and G. C. Wick, Phys. Rev. D9, 2291 (1974).Google Scholar
  9. 8.
    P. Bonche, S. Koonin, and J. W. Negele, Phys. Rev. C13, 1226 (1976).Google Scholar
  10. 9.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, Phys. Lett. 72B, 481 (1978); Ann. Phys. 20, 91 (1979).Google Scholar
  11. 10.
    R. Shankar and E. Witten, Nucl. Phys. B141, 349 (1978); E. Witten, Nucl. Phys. B142, 285 (1978).Google Scholar
  12. 11.
    V. E. Zakharov and A. V. Mikhailov, Commun. Math. Phys. 74, 21 (1980).Google Scholar
  13. 12.
    A. Neveu and N. Papanicolaou, Commun. Math. Phys. 58, 31 (1978).Google Scholar
  14. 13.
    J. Hirsch, D. Scalapino, and R. Sugar, in progress.Google Scholar
  15. 14.
    A. R. Bishop, D. K. Campbell, and K. Fesser, Phys. Rev. B, to be published.Google Scholar
  16. 15.
    For recent review see articles in Proc. Int. Conf. on Low-Dimensional Synthetic Metals (Helsingor, Denmark, August 1980) in Chemica Scripta 17 (1981); Physics in One Dimension, eds. J. Bernasconi and T. Schneider (Springer Verlag, 1981); and A. J. Heeger and A. G. MacDiarmid, p. 353–391 in The Physics and Chemistry of Low Dimensional Solids; ed. L. Alcâcer (Reidel, 1980).Google Scholar
  17. 16.
    W. P. Su and J. R. Schrieffer, Proc. Nat. Acad. Sci. 77, 5526 (1980).Google Scholar
  18. 17.
    S. Brazovskii, JETP Lett. 28 606 (1978) (ZhETF Pisma 28, 656 (1978)). JETP (Sov. Phys.) 51 342 (1980) (ZhETF (USSR) 78, 677 (1980)).Google Scholar
  19. 18.
    H. Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev. B21 2388 (1980).Google Scholar
  20. 19.
    J. A. Krumhansl, B. Horovitz, and A. J. Heeger, Solid State Comm. 34, 945 (1980).Google Scholar
  21. 20.
    B. Horovitz, Solid State Comm. 34, 61 (1980); Phys. Rev. Lett. 46 742 (1981); Phys. Rev. B22 1101 (1980).Google Scholar
  22. 21.
    S. Brazovskii and N. Kirova, JETP Lett. 33, 4 (1981) (ZhETF Pisma 33, 6 (1981).Google Scholar
  23. 22.
    D. K. Campbell and A. R. Bishop, Phys. Rev. B 24, 4859 (1981); Nucl. Phys. B200 (FS4), 297 (1982).Google Scholar
  24. 23.
    J. E. Hirsch and E. Fradkin, to be published (preprint NSF-ITP-82-34).Google Scholar
  25. 24.
    R. Jackiw and J. R. Schrieffer, Nucl. Phys. B190 (FS3), 253 (1982).Google Scholar
  26. 25.
    T. Holstein, Ann. Phys. 8, 325 (1959); Mol. Cryst. Liq. Cryst. 77, 235(1981); T. Holstein and L. Turkevich, Phys. Reports (to be published).Google Scholar
  27. 26.
    R. A. Cowley, Adv. in Phys. 29, 1 (1980); A. D. Bruce, Adv. in Phys. 29, 111 (1980); A. Bruce and R. Cowley, Adv. in Physics 29, 218 (1980).Google Scholar
  28. 27.
    M. J. Rice, Phys. Lett. 71A, 152 (1979); M. J. Rice and J. Timonen, Phys. Lett. 73A, 368 (1979); E. J. Mele and M. J. Rice, Chemica Scripta 17, 21 (1981).Google Scholar
  29. 28.
    D. K. Campbell, p. 674 in Nuclear Physics with Hea Ions and Mesons, Les Houches Session XXX, 1977, R. Balian, et al., eds. North Holland, 1978).Google Scholar
  30. 29.
    D. K. Campbell, Ann. Phys. 129, 249 (1980).Google Scholar
  31. 30.
    D. K. Campbell, J. W. Negele, and M. Soldate, unpublished.Google Scholar
  32. 31.
    A. E. Kudryavtsev, JETP Lett. 22, 82 (1975).Google Scholar
  33. 32.
    B. S. Getmanov, JETP Lett. 24, 291 (1976).Google Scholar
  34. 33.
    V. G. Makhankov, Phys. Rep. 35C, 1 (1978).Google Scholar
  35. 34.
    M. J. Ablowitz, M. D. Kruskal, and J. F. Ladik, SIAM Journ. App. Math. 36 478 (1979).Google Scholar
  36. 35.
    T. Sugiyama, Prog. Theor. Phys. 61, 1550 (1979).Google Scholar
  37. 36.
    R. Klein, W. Hasenfratz, N. Theodorakopoulos, and W. Wünderlich, Ferroelectrics 26, 721 (1980).Google Scholar
  38. 37.
    M. Moshir, Nuc. Phys. B185, 318 (1981).Google Scholar
  39. 38.
    C. A. Wingate, SIAM Journ. App. Math., in press.Google Scholar
  40. 39.
    39. D. K. Campbell, J. Schonfeld, C. A. Wingate, in preparation.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • David K. Campbell
    • 1
  1. 1.Los Alamos National LaboratoryCenter for Nonlinear Studies and Theoretical DivisionLos Alamos

Personalised recommendations