Mean-field Monte Carlo method for many-body ground states

  • S. E. Koonin
  • G. Sugiyama
  • H. Friedrichl
  • W. K. Kellogg
IV. Path Integrals and Monte Carlo Methods
Part of the Lecture Notes in Physics book series (LNP, volume 171)


A method is described for calculating the exact ground state energy of a many-body system, whether fermion or boson. The Hubbard-Stratonovich representation of the imaginary-time many-body propagator is used to express the ground-state energy as a ratio of two functional integrals. When discretized on a space-time mesh, the Monte-Carlo evaluation of this ratio is equivalent to many TDHF evolutions of the system in a random mean-field. The method is illustrated by application to a many-boson system in one dimension with a zero-range two-body interaction.


Fermion System Initial Relaxation Exact Ground State Energy Spatial Grid Fine Strong Repulsive Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. M. Ceperley and M. H. Kalos in Monte-Carlo Methods in Statistical Physics, K. Binder, ed. (Springer-Verlag, N. Y., 1979) p.145.Google Scholar
  2. [2]
    D. M. Ceperley and B. Alder, Phys. Rev. Lett. 45, 566 (1980).Google Scholar
  3. [3]
    J. G. Zabolitsky and M. H. Kalos, Nucl. Phys. A356, 114 (1981).Google Scholar
  4. [4]
    G. Maddison, Y. Alhassid, K. Chow, and S. E. Koonin, to be published.Google Scholar
  5. [5]
    S. Levit, Phys. Rev. C21, 1594 (1980).Google Scholar
  6. [6]
    P. Bonche, S. E. Koonin, and J. W. Negele, Phys. Rev. C13, 1226 (1976); R. Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, 1962) p. 195.Google Scholar
  7. [7]
    R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D24, 2278 (1981).Google Scholar
  8. [8]
    See, for example, J. Kogut et al., Phys. Rev. Lett. 48, 1140 (1982) and references cited therein.Google Scholar
  9. [9]
    B. Yoon and J. W. Negele, Phys. Rev. A16, 1451 (1977).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • S. E. Koonin
    • 1
  • G. Sugiyama
    • 1
  • H. Friedrichl
    • 1
  • W. K. Kellogg
    • 1
  1. 1.Radiation Laboratory, CaltechPasadenaUSA

Personalised recommendations