Advertisement

Time dependent Hartfree-Fock the time-dependent Hartree-Fock description of heavy-ion collisions: A progress report

  • S. J. Krieger
I. Time Dependent Hartree-Fock
Part of the Lecture Notes in Physics book series (LNP, volume 171)

Abstract

The domains of validity of the various approximations to full three-dimensional TDHF calculations are fairly well understood at this point. Further work needs to be done to determine the appropriate effective interaction to employ, and it is important to investigate the effects of relaxing the spin symmetry. Nevertheless significant progress has been made in effecting realistic calculations, and comparison with experiment, especially for fusion in light systems, where most of the data exists, is extremely encouraging. Finally, it is important that better calculations, as well as experiments at higher energy be effected in order to settle the question as to the existence or non-existence of an angular momentum window for fusion.

Keywords

Angular Momentum Light System Fusion Cross Section Slater Determinant Experimental Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).Google Scholar
  2. 2.
    P. Bonche, S. E. Koonin, and J. W. Negele, Phys. Rev. C13, 1226 (1976).Google Scholar
  3. 3.
    G. Wegmann, Physics Lett. 50B, 327 (1974); S. E. Koonin, Prog. in Part. and Nucl. Phys. 4, 283 (1980).Google Scholar
  4. 4.
    J. A. Wheeler, Phys. Rev. 52, 1083, 1107 (1937).Google Scholar
  5. 5.
    D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).Google Scholar
  6. 6.
    A. de-Shalit and H. Feshbach, Theoretical Nuclear Physics, (Wiley, New York, 1974) Vol. 1, p. 541.Google Scholar
  7. 7.
    S. T. Belyaev, Nucl. Phys. 64, 17 (1965); F. M. H. Villars, in Dynamic Structure of Nuclear States, Proceedings of the 1971 Mont Tremblant International Summer School, edited by D. J. Rowe (Univ. of Toronto Press, Toronto, 1972); M. Baranger and M. Veneroni, Ann. Phys. (N.Y.) 114, 123 (1978).Google Scholar
  8. 8.
    K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev. C6, 2385 (1976).Google Scholar
  9. 9.
    Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger, and D. Vautherin, Nucl. Phys. A249, 215 (1975).Google Scholar
  10. 10.
    S. J. Krieger and K. Goeke, Nucl. Phys. A234, 269 (1974).Google Scholar
  11. 11.
    S. E. Koonin, Ph.D. thesis, Massachusetts Institute of Technology, 1975 (unpublished); C. Y. Wong, J. A. Maruhn, and T. A. Welton, Nucl. Phys. A256, 469 (1975).Google Scholar
  12. 12.
    S. Levit, Phys. Rev. C21, 1594 (1980); S. Levit, J. W. Negele, and Z. Paltiel, Phys. Rev. C21, 1603 (1980); Y. Alhassid, B. MÜller, and S. E. Koonin, Phys. Rev. C23, 487 (1981).Google Scholar
  13. 13.
    Y. Alhassid and S. E. Koonin, Phys. Rev. C23, 1590 (1981).Google Scholar
  14. 14.
    J. W. Negele, in Proceedings of the Meeting on Heavy Ion Collisions, Fall Creek Falls State Park, Pikeville, Tennessee (1977); P. C. Lichtner and J. J. Griffin, Phys. Rev. Lett. 37, 1521 (1976).Google Scholar
  15. 15.
    A. Kerman and S. E. Koonin, Ann. Phys. 100, 332 (1976).Google Scholar
  16. 16.
    G. E. Brown, Unified Theory of Nuclear Models (North-Holland, Amsterdam, 1964).Google Scholar
  17. 17.
    J. W. Negele in Theoretical Methods in Medium Energy and Heavy-Ion Physics, K. McVoy and W. A. Friedman, ed. (Plenum Press, New York, 1978); S. E. Koonin, Progress in Part. and Nucl. Phys. 4, 283 (1980); J. W. Negele (to be published in Reviews of Modern Physics); K. T. R. Davies, K. R. S. Devi, S. E. Koonin and M. R. Strayer, Cal-Tech preprint MAP-23 (1982).Google Scholar
  18. 18.
    R. Y. Cusson, H. P. Trivedi, H. W. Meldner R. Wright and M. S. Weiss, Phys. Rev. C14, 1615 (1976).Google Scholar
  19. 19.
    T. H. R. Skyrme, Phil. Mag. 1, 1043 (1956); Nucl. Phys. 9, 615 (1959).Google Scholar
  20. 20.
    P. Quentin and H. Flocard, Ann. Rev. of Nuc. and Part. Science 28, 523 (1978).Google Scholar
  21. 21.
    J. W. Negele and D. Vautherin, Phys. Rev. C5, 1472 (1973).Google Scholar
  22. 22.
    J. W. Negele, Phys. Rev. C1, 1260 (1970).Google Scholar
  23. 23.
    P. Hoodbhoy and J. W. Negele, Nucl. Phys. A288, 23 (1977).Google Scholar
  24. 24.
    S. J. Krieger and K. T. R. Davies, Phys. Rev. C18, 2567 (1978).Google Scholar
  25. 25.
    P. H. Heenen, private communication.Google Scholar
  26. 26.
    J. A. Maruhn and R. Y. Cusson, Nucl. Phys. A270, 471 (1976); R. Y. Cusson and J. A. Maruhn, Phys. Letts. B62, 134 (1976).Google Scholar
  27. 27.
    S. E. Koonin, K. T. R. Davies, V. Maruhn-Rezwani, H. Feldmeier, S. J. Krieger, and J. W. Negele, Phys. Rev. C15, 1359 (1977).Google Scholar
  28. 28.
    K. T. R. Davies, H. T. Feldmeier, H. Flocard, and M. S. Weiss, Phys. Rev. C18, 2631 (1978).Google Scholar
  29. 29.
    H. T. Feldmeier, ORNL Report ORNL/TN6053 (1977).Google Scholar
  30. 30.
    K. R. Sandhya Devi and M. R. Strayer, Phys. Letts. B77, 135 (1978).Google Scholar
  31. 31.
    S. E. Koonin, B. Flanders, H. Flocard, and M. S. Weiss, Phys. Letts., B77, 13, (1978).Google Scholar
  32. 32.
    In the filling approximation, a spherical nucleus is constructed by assigning equal, time-independent fractional occupation probabilities, ni to the orbitals of the last shell. Although the density p = Σj njΨjΨj then no longer satisfies the HF condition p2 = p, this technique has been adopted in order to obtain spherically symmetric solutions for open-shell nuclei.Google Scholar
  33. 33.
    K. R. Sandhya Devi, M. R. Strayer, K. T. R. Davies, S. E. Koonin, and A. K. Dhar (to be published in Phys. Rev. C).Google Scholar
  34. 34.
    E. Tomasi, D. Ardouin, J. Barreto, V. Bernard, B. Cauvin, C. Magnago, C. Mazur, C. Ngô, E. Piasecki, and M. Ribrag, Nucl. Phys. A373, 341 (1982).Google Scholar
  35. 35.
    M. Lefort, Rep. Prog. Phys. 39, 129 (1976).Google Scholar
  36. 36.
    P. Bonche, B. Grammaticos, and S. E. Koonin, Phys. Rev. C17, 1700 (1978).Google Scholar
  37. 37.
    S. J. Krieger and K. T. R. Davies, Phys. Rev. C20, 167 (1979).Google Scholar
  38. 38.
    P. Sperr, S. Vigdor, Y. Eisen, W. Henning, D. G. Kovar, T. R. Ophel, and B. Zeidman, Phys. Rev. Lett. 36, 405 (1976).Google Scholar
  39. 39.
    P. Sperr, T. H. Braid, Y. Eisen, D. G. Kovar, F. W. Prosser, Jr., J. P. Schiffer, S. L. Tabor, and S. Vigdor, Phys. Rev. Lett. 37, 321 (1976).Google Scholar
  40. 40.
    K. Daneshvar, D. G. Kovar, S. J. Krieger, and K. T. R. Davies, Phys. Rev. C25, 1342 (1982).Google Scholar
  41. 41.
    J. Blocki and H. Flocard, Nucl. Phys. A273, 45 (1976).Google Scholar
  42. 42.
    K. R. S. Devi, A. K. Dhar, and M. R. Strayer, Phys. Rev. 223, 2062 (1981).Google Scholar
  43. 43.
    S. Tabor, D. Geesaman, W. Henning, D. Kovar, K. Rehn, and F. Prosser, Phys. Rev. C17, 2136 (1978).Google Scholar
  44. 44.
    S. J. Krieger and M. S. Weiss, Phys. Rev. C24, 928 (1981).Google Scholar
  45. 45.
    P. Bonche, K. T. R. Davies, B. Flanders, H. Flocard, B. Grammaticos, S. E. Koonin, S. J. Krieger, and M. S. Weiss, Phys. Rev. C20, 641 (1979).Google Scholar
  46. 46.
    K. T. R. Davies, K. R. Sandhya Devi, and M. R. Strayer, Phys. Rev. C24, 2576 (1981).Google Scholar
  47. 47.
    A. Lazzarini, H. Doubre, K. T. Lesko, V. Metag, A. Seamster, R. Vandenbosch, and W. Merryfield, Phys. Rev. 224, 309 (1981).Google Scholar
  48. 48.
    J. Barreto, G. Auger, H. Doubre, M. Langevin, and E. Plagnol, Annual Report IPN Orsay (1980) to be published.Google Scholar
  49. 49.
    E. Tomasi, D. Ardouin, J. Barreto, V. Bernard, B. Cauvin, C. Magnago, C. Mazur, C. Ngô, E. Piasecki, and M. Ribrag, Nucl. Phys. A373, 341 (1982).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • S. J. Krieger
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations