Branching of Navier-Stokes equations in a spherical gap

  • Géza Schrauf
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 170)


Reynolds Number Flow Mode Couette Flow Radius Ratio Continuation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BARTELS, F., Rotationssymmetrische Strömungen im Spalt konzentrischer Kugeln, Dissertation RWTH Aachen, 1978.Google Scholar
  2. [2]
    BARTELS, F., KRAUSE, E., Taylor vortices in spherical gaps. In: Eppler, R., Fasel, H. (Ed.), Laminar-turbulent transition. Proceedings, IUTAM Symposium, 16. 22.9.1979. Stuttgart, Springer, Berlin/Heidelberg/New York 1980.Google Scholar
  3. [3]
    BONNET, J.-P., ALZIARY de ROQUEFORT, T., Ecoulement entre deux sphères concentrique en rotation, Journal de Mécanique 15,3 (1976), 373–397.Google Scholar
  4. [4]
    BENJAMIN, T.B., Applications of Leray-Schauder degree theory to problems of hydrodynamic stability, Math. Proc. Camb. Soc. 79, (1976), 373–392.Google Scholar
  5. [5]
    BÜHLER, K., private communication, June 1982.Google Scholar
  6. [6]
    KELLER, H.B., Numerical solutions of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P. (Ed.), Applications of bifurcation theory, Academic Press, New York, 1977, 359–384.Google Scholar
  7. [7]
    MEYER-SPASCHE, R., KELLER, H.B., Computations of the axisymmetric flow between rotating cylinders, J. Comp. Physics 35 (1980), 100–109.Google Scholar
  8. [8]
    PEARSON, C.E., A numerical study of the time-dependent viscous flow between two rotating spheres, J. Fluid Mech. 28 (1967), 323–336.Google Scholar
  9. [9]
    SAWATZKI, O., ZIEREP, J., Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflachen, von denen die innere rotiert, Acta Mechánica, 9 (1970), 13–35.Google Scholar
  10. [10]
    WIMMER, M., Experiments on a viscous fluid flow between concentric rotating spheres, J. Fluid Mech. 78 (1976), 317–335.Google Scholar
  11. [11]
    YAVORSKAYA, I.M., ASTA'EVA, N.M., Numerical analysis of the stability and non-uniqueness of spherical Couette flow. In: Hirschel, E.M. (Ed.), Proceedings of the third GAMM-conference on numerical methods in fluid mechanics, DFVLR, Cologne 10.-12.10.1979, Vieweg, Braunschweig /Wiesbaden 1980.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Géza Schrauf
    • 1
  1. 1.Institut für Angewandte Mathematik der Universität BonnBonn 1Germany

Personalised recommendations