Flow simulation by discrete vortex method

  • Koichi Oshima
  • Yuko Oshima
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 170)


Applicability of discrete vortex approximation was tested experimentally for four types of flow conditions; an oscillating airfoil, roll-up of wake vortex layer originated from an oscillating plate, an impulsively started flat plate with an angle-of-attack and a two-dimensional rotating elliptic airfoil. Detailed flow visualization reveals the mechanism of creation, growth and migration of vortices and the comparison with those predicted by discrete vortex method has been done. It is concluded that this numerical simulation method is most usefull to predict global feature of the flow fields and care must be taken not to excessively increase the spacial and time resolution.


Point Vortex Vortex Sheet Vortex Method Airfoil Surface Free Vortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker,G.R. (1980) A test of the method of Fink and Soh for following vortex-sheet motion, J.Fluid Mech. vol. 100 pp.209–220Google Scholar
  2. Basu,B.C. and Hancock,G.J. (1978) The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow, J Fluid Mech. vol.87 pp.159–178Google Scholar
  3. Bearman,P.W. and Graham,J.M.R. (1980) Vortex shedding from bluff bodies in oscillatory flow: A report on Euromech 119, J.Fluid Mech. vo1.99 pp.225–245Google Scholar
  4. Bratt,B.A. (1953) Flow patterns in the wake of an oscillating aerofoil, R and M 2773Google Scholar
  5. Chorin,A.J. and Bernard,P.S. (1973) Discretization of a vortex sheet with an example of roll-up, J.Comp.Phys. vol.13 pp.423–429Google Scholar
  6. Ericsson, L.E. (1979) Karman vortex shedding and the effect of body motion, AIAA J. vol.18 pp.935–944Google Scholar
  7. Fink,P.T. and Soh,W.K. (1978) A new approach to roll-up calculation of vortex sheets, Proc.R.Soc.Lond.A. vol.362 pp.195–208Google Scholar
  8. Geissler,W. (1978) Nonlinear unsteady potential flow calculation for three-dimensional oscillating wings, AIAA J. vol.16 pp.1168–1174Google Scholar
  9. Graham,J.M.R. (1980) The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter numbers, J.Fluid Mech. vo1.97 pp.331–346Google Scholar
  10. Huang,M-K and Chow,C-Y (1982) Trapping of a free vortex by Joukowski airfoil, AIAA J. vol.20 pp.292–298Google Scholar
  11. Iversen,J.D. (1979) Autorotating flat-plate wings: the effect of the moment of inertia, geometry and Reynolds number, J.Fluid Mech. vol.92 pp.327–348Google Scholar
  12. Kaden,H. (1931) Aufwicklung einer unstabilen Unsteigkeitsflach, Ing.Arch. vol.2 pp.149–239Google Scholar
  13. Katz,J. (1981) A discrete vortex method for the non-steady separated flow over an airfoil, J.Fluid Mech. vol.102 pp.315–328Google Scholar
  14. Kiya,M and Arie,M (1977) A contribution to an inviscid vortex-shedding model for an inclined flat plate in uniform flow, J Fluid M. vo1.82 pp.223–240Google Scholar
  15. Koromilas,C.A. and Telionis,D.P. (1980) Unsteady laminar separation: an experimental study, J.Fluid Mech. vol.97 pp.347–384Google Scholar
  16. Kuwahara,K. and H.Takami (1973) Numerical studies of two-dimensional vortex motion by a system of point vortices, J.Phys.Soc.Japan vol.34 pp.247–253Google Scholar
  17. Kuwahara,K. (1973) Numerical study of flow past an inclined flat plate by an inviscid model, J.Phys.Soc.Japan vol.35 pp.1545–1551Google Scholar
  18. Kuwahara,K. (1978) Study of flow past a circular cylinder by an inviscid model, J.Phys.Soc.Japan vol.45 pp.292–297Google Scholar
  19. Leonard,A. (1980) Vortex methods for flow simulation, J.Comp.Phys. vol.37 pp.289–335Google Scholar
  20. Lugt,H.J. and Ohring,S. (1977) Rotating elliptic cylinders in a viscous fluid at rest or in a parallel stream, J.Fluid Mech. vol.79 pp.127–156Google Scholar
  21. Lugt,H.J. (1980) Autorotation of an elliptic cylinder about an axis perpendicular to the flow, J.Fluid Mech. vol.99 pp.817–840Google Scholar
  22. McCroskey,W.J. (1977) Some current research in unsteady fluid dynamics-the 1976 Freeman scholar lecture, J.Fluids Engrg. vol.99pp8–38Google Scholar
  23. McCroskey,W.J. (1982) Unsteady airfoils, Ann.Rev.Fluid Mech. vol.14 pp.285–311Google Scholar
  24. McCroskey,W.J. and Pucci,S.L. (1982) Viscous-inviscid interaction on oscillating airfoil in subsonic flow, AIAA J. vol.20 pp.167–174Google Scholar
  25. Moore,D.W. (1974) A numerical study of the rolled-up of a finite vortex sheet, J.Fluid Mech. vol.63 pp.225–2335Google Scholar
  26. Mueller,T.J. and Batill,S.F (1982) Experimental studies of separtion on a two-dimensional airfoil at low Reynolds numbers, AIAA J. vol.20 pp.457–463Google Scholar
  27. Ono,K.,Kuwahara,K.and Oshima,K. (1980) Numerical analysis of dynamic stall phenomena of an oscillating airfoil by the discrete vortex approximation, 7 Int.Conf.Numeri.Method.Fluid Dyn. Springer-Verlag pp.310–315Google Scholar
  28. Oshima,Y. and Oshima,K. (1980) Vortical flow behind an oscillating airfoil, Theo.Appl.Mech. 15 ICTAM pp357–368Google Scholar
  29. Pullin,D.I. (1978) The large:scale structure of unsteady self-similar rolled-up vortex sheets, J. Fluid Mech. vol.88 pp.401–430Google Scholar
  30. Pullin,D.I. and Perry,A.E. (1980) Some flow visualization experiments on the starting vortex, J.Fluid Mech. vol.97 pp.239–255Google Scholar
  31. Pullin,D.I. and Phillips,R.C. (1981) On a generalization of Kaden's problem, J.Fluid Mech. vol.104 pp.45–53Google Scholar
  32. Rosenhead,L. (1931) The formation of vortices from a surface of discontinuity, Proc.R.Soc.A. vol.134 pp.170–192Google Scholar
  33. Saffman,P.G. and Sheffield,J.S. (1977) Flow over a wing with an attached free vortex, Studies Appl.Math. vol.57 pp.107–117Google Scholar
  34. Saffman,P.G. and Baker,G.R. (1979) Vortex interactions, Ann.Rev.Fluid Mech. vol.11 pp.95–122Google Scholar
  35. Sarpkaya,T. and Schoaff,R.L. (1979) Inviscid model of two-dimensional vortex shedding by a circular cylinder, AIAA J. vol.17 pp.1193–1200Google Scholar
  36. Sears,W.R. (1976) Unsteady motion of airfoils with boundary-layer separation, AIAA J. vol.14 pp.216–220Google Scholar
  37. Smith,E.H. (1971) Autorotating wings: an experimental investigation, J.Fluid Mech. vol.50 pp.513–534Google Scholar
  38. Sugavanam, A. and Wu,J.C. (1982) Numerical study of separated turbulent flow over airfoils, AIAA J. vol.20 pp.464–470Google Scholar
  39. Williams,III,J.C. (1977) Incompressible boundary-layer separation, Ann.Rev.Fluid Mech. vol.9 pp.113–144Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Koichi Oshima
    • 1
  • Yuko Oshima
    • 2
  1. 1.The Institute of Space and Astronautical ScienceTokyo
  2. 2.Dept. PhysicsOchanomizu UniversityTokyo

Personalised recommendations