Advertisement

Shock-fitted Euler solutions to shock-vortex interactions

  • Manuel D. Salas
  • Thomas A. Zang
  • M. Yousuff Hussaini
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 170)

Keywords

Shock Wave Vortex Street Single Vortex Shock Wave Interaction Finite Difference Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pao, S. P. and Salas, M. D.: A Numerical Study of Two-Dimensional Shock Interaction. AIAA Paper 81-1205. Presented at the AIAA 14th Fluids and Plasma Dynamics Conference, June 23–25, 1981, Palo Alto, CA.Google Scholar
  2. [2]
    Zang, T. A.; Hussaini, M. Y.; and Bushnell, D. M.: Numerical Computations of Turbulence Amplification in Shock Wave Interactions. AIAA Paper No. 820293. Presented at the AIAA 20th Aerospace Sciences Meeting, January 11–13, 1982, Orlando, FL.Google Scholar
  3. [3]
    Orszag, S. A. and Kells, L. C.: Transition to Turbulence in Plain Poiseuille Flow and Plain Couette Flow, J. Fluid Mech., Vol. 96, 1980, pp. 159–205.Google Scholar
  4. [4]
    Wray, A. and Hussaini, M. Y.: Numerical Experiments in Boundary-Layer Stability. AIAA Paper No. 80-0275. Presented at the AIAA 18th Aerospace Sciences Meeting, January 14–16, 1980, Pasadena, CA.Google Scholar
  5. [5]
    Gottlieb, D.; Lustman, L.; and Orszag, S.: Spectral Calculations of One-Dimensional Inviscid Compressible Flows, SIAM J. Sci. Statis. Comput., Vol. 2, 1981, pp. 296–310.Google Scholar
  6. [6]
    Zang, T. A. and Hussaini, M. Y.: Mixed Spectral-Finite Difference Approximations for Slightly Viscous Flows, Proc. of the 7th Intl. Conf. on Numerical Methods in Fluid Dynamics, Springer-Verlag, 1981, pp. 461–466.Google Scholar
  7. [7]
    Dosanjh, D. S. and Weeks, T. M.: Interaction of a Starting Vortex as well as a Vortex Street with a Traveling Shock Wave, AIAA J., Vol. 13, 1965, pp. 216–223.Google Scholar
  8. [8]
    Oliger, J. and Sundstrom, A.: Theoretical and Practical Aspects of Some Initial Boundary Value Problems in Fluid Dynamics, SIAM J. Appl. Math., Vol. 35, 1978, pp. 419–446.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Manuel D. Salas
    • 1
  • Thomas A. Zang
    • 2
  • M. Yousuff Hussaini
    • 3
  1. 1.NASA, Langley Research CenterHamptonUSA
  2. 2.College of William and MaryWilliamsburgUSA
  3. 3.Institute for Computer Applications in Science and EngineeringHamptonUSA

Personalised recommendations