Numerical simulation of wall-bounded turbulent shear flows

  • Parviz Moin
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 170)


Reynolds Number Grid Point Turbulent Boundary Layer Couette Flow Spanwise Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deardorff, J. W., 1970. A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers. J. Fluid Mech., 41, 453–480.Google Scholar
  2. 2.
    Schumann, U., 1975. Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli. J. Comp. Phys., 18, 376–404.Google Scholar
  3. 3.
    Moin, P., and J. Kim, 1982. Numerical Investigation of Turbulent Channel Flow. J. Fluid Mech., 118, 341.Google Scholar
  4. 4.
    Deardorff, J. W., 1973. The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence. J. Fluids Engr., 95, 429.Google Scholar
  5. 5.
    Leonard, A., 1981.Divergence-Free Vector Expansions for 3D Flow Simulations. Bull. of Amer. Phys. Soc., 26, 9, 1247.Google Scholar
  6. 6.
    Kline, S. J., W. C. Reynolds, F. A. Schraub, and P. W. Rundstadler, 1967. The Structure of Turbulent Boundary Layers. J. Fluid Mech., 30, 741–773.Google Scholar
  7. 7.
    Blackwelder, R. F., and R. E. Kaplan, 1976. On the Wall Structure of Turbulent Boundary Layer. J. Fluid Mech., 76, 89.Google Scholar
  8. 8.
    Gupta, A. K., J. Laufer, and R. E. Kaplan, 1971. Spatial Structure in the Viscous Sublayer. J. Fluid Mech., 50, 493.Google Scholar
  9. 9.
    Comte-Bellot, G., 1963. Contribution a l'Etude de la Turbulence de Conduite.Google Scholar
  10. 10.
    Hinze, J. 0., 1975. Turbulence, McGraw-Hill, Inc., 2nd ed.Google Scholar
  11. 11.
    Eckelmann, H., 1974. The Structure of Viscous Sublayer and The Adjacent Wall Region in a Turbulent Channel Flow. J. Fluid Mech., 65, 439.Google Scholar
  12. 12.
    Clark, J. A., and E. Markland, 1971. Flow Visualization in Turbulent Boundary-Layers. Proc. ASCE, J. Hydraulics Div., 97, 10, 1653–1664.Google Scholar
  13. 13.
    Bakewell, H. P., and J. L. Lumley, 1967. Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow. Phys. Fluids, 10, 1880.Google Scholar
  14. 14.
    Chapman, D. R., 1979. Computatjonal Aerodynamics Development and Outlook. AIAA.J., 17, 1293–1313.Google Scholar
  15. 15.
    Chapman, D. R., and G. D. Kuhn, 1981. Two Component Navier-Stokes Computational Model of Viscous Sublayer Turbulence. AIAA Paper 81-1024, AIAA 5th CFD Conf., Palo Alto, Calif.Google Scholar
  16. 16.
    Harlow, F. H., and J. E. Welch, 1965. Numerical Calculation of Time-Dependent Viscous Incompressible Flow. Phys. Fluids, 8, 2182.Google Scholar
  17. 17.
    Orszag, S. A., and L. C. Kells, 1980. Transition to Turbulence in Plane Poiseulle and Plane Couette Flow. J. Fluid Mech., 96, 159.Google Scholar
  18. 18.
    Patera, A. T., and S. A. Orszag, 1980. Transition and Turbulence in Planar Channel Flows. Lecture Notes in Physics (W. C. Reynolds, and R. W. MacCormac, eds.) 114, 329, Springer-Verlag.Google Scholar
  19. 19.
    Moin, P., and J. Kim, 1980. On the Numerical Solution of Time-Dependent Viscous Incompressible Fluid Flows Involving Solid Boundaries. J. Comp. Physics, 35, 381–392.Google Scholar
  20. 20.
    Kleiser, L., 1979. Solution of Coupled Velocity-Pressure Equations in the Fourier-Chebyshev Spectral Method for Incompressible Flows. Private communication.Google Scholar
  21. 21.
    Taylor, T. D., and J. W. Murdock, 1981. Application of Spectral Methods to the Solution of Navier-Stokes Equations. Comp. and Fluids, 9, 255.Google Scholar
  22. 22.
    Orszag, S. A., 1971. Galerkin Approximations to Flows Within Slabs, Spheres, and Cylinders. Phys. Rev. Lett., 26, 1100.Google Scholar
  23. 23.
    Herring, J. R., S. A. Orszag, R. H. Kraichnan, and D. G. Fox, 1974. Decay of Two-Dimensional Homogeneous Turbulence. J. Fluid Mech., 66, 417.Google Scholar
  24. 24.
    Buzbee, B., G. Goulub, and C. Nielsen, 1970. On the Direct Methods for Solving Poisson's Equation. SIAM J. Numer. Anal., 7, 627.Google Scholar
  25. 25.
    Shaanan, S., J. H. Ferziger, and W. C. Reynolds, 1975. Numerical Simulation of Turbulence in the Presence of Shear. Report No. TF-6, Dept. of Mech., Engrg., Stanford University.Google Scholar
  26. 26.
    Moin, P., W. C. Reynolds, and J. H. Ferziger, 1978. Large Eddy Simulation of Incompressible Turbulent Channel Flow. Report No. TF-12, Dept. of Mech. Engrg., Stanford University.Google Scholar
  27. 27.
    Kim, J., and P. Moin, 1979. Large Eddy Simulation of Turbulent Channel Flow —ILLIAC IV Calculation. In Turbulent Boundary Layers—Experiments, Theory, and Modeling, The Hague, Netherlands. AGARD Conf. Proc. no. 271.Google Scholar
  28. 28.
    Leonard, A., and A. Wray, 1982. Numerical Solution of Three-Dimensional Transitional Flow in a Pipe. Proc. of this conference.Google Scholar
  29. 29.
    Moser, R. D., A. Leonard, and P. Moin, 1982. To be published.Google Scholar
  30. 30.
    Wray, A., and M. Y. Hussaini, 1980. Numerical Experiments in Boundary-Layer Stability.AIAA Paper 80-0275, AIAA 18th Aerospace Science Meeting, Pasadena, Calif.Google Scholar
  31. 31.
    Hussain, A.K.M.F., and W. C. Reynolds, 1975. Measurements in Fully Developed Turbulent Channel Flow. J. Fluids Engrg., 97, 568–578.Google Scholar
  32. 32.
    Head, M. R., and P. Bandyopadhyay, 1981. New Aspects of Turbulent Boundary Layer Structure. J. Fluid Mech., 107, 297.Google Scholar
  33. 33.
    Kim, J., 1982. Stanford University, to be published.Google Scholar
  34. 34.
    Kays, W. M., 1972. Heat Transfer to the Transpired Turbulent Boundary-Layer. Int. J. Heat and Mass Transfer, 15, 1023.Google Scholar
  35. 35.
    Kim, J., 1982. Stanford University, to be published.Google Scholar
  36. 36.
    Johnston, J. P., R. M. Halleen, and D. K. Lezius, 1971. Effects of Spanwise Rotation on the Structure of Two Dimensional Fully Developed Turbulent Channel Flow. J. Fluid Mech., 56, 533.Google Scholar
  37. 37.
    Rao, K. N., R. Narasimha, and M. A. Badri Narayanan, 1971. The Bursting Phenomenon in a Turbulent Boundary Layer. J. Fluid Mech., 48, 339.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Parviz Moin
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations