Numerical solution of transonic shear flows past thin bodies

  • K. Kozel
  • J. Polášek
  • M. Vavřircova
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 170)


Shock Wave Mach Number Difference Scheme Perturbation Velocity Transonic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kozel,K.;Polášek,J.;Vavřincová,M.:Numerical Solution of Transonic Flow Through a Cascade with Slender Profiles,Proceedings of VI.International Conference on Numerical Methods in Fluid Dynamics,Tbilisi 1978Google Scholar
  2. [2]
    Kozel,K.;Polášek,J.;Vavřincová,M.:ffber eine Relaxationsmethode zur Berechnung von ebenen transonischen Strömungfeldern,ZAMM, T 204-206,1980Google Scholar
  3. [3]
    Oliver,D.A.;Sparis,P.:Computational Studies of Three-Dimensional Transonic Shear Flow,NACA CR-1816,1971Google Scholar
  4. [4]
    Kozel,K.;Rozsypal,P.:Computation of Transonic Flow Past a System of Thin Profiles in a Channel,Strojnický časopis No.6, 1981 (in Czech)Google Scholar
  5. [5]
    Dvořák,R.:On the Development and Structure of Transonic Flow in Cascades,Symposium Transsonicum II,Göttingen,1975Google Scholar
  6. [6]
    Kozel,K.;Rozsypal,P.;VavPincovd',M.:Numerical Solution of Three-Dimensional Transonic Flow Past Thin Body,Strojnický časopis, 1982 (in Czech)Google Scholar
  7. [7]
    Sator,F.G.:Computation of Transonic Flow with Detached Bow-Shocks Through Two-Dimensional Turbomachinery Cascades,ICAS Paper,No 76-40,1976Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • K. Kozel
    • 1
  • J. Polášek
    • 1
  • M. Vavřircova
    • 1
  1. 1.Dept. of Applied MathematicsFaculty of Mechanical EngineeringTU PragueCzechoslovakia

Personalised recommendations