Advertisement

Gas solubilities in microbial culture media

  • Adrian Schumpe
  • Gerd Quicker
  • Wolf-Dieter Deckwer
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 24)

Abstract

Available information on gas solubility in microbial culture media is reviewed. Emphasis is given to oxygen and carbon dioxide solubilities. Experimental techniques which can be successfully applied to culture media are presented. All the parameters which affect gas solubilities, i.e., above all the composition of the media are thoroughly discussed. In general, gas solubilities in nutrition and cultivation media can be predicted by a log-additivity approach. To this end knowledge of the composition of the media and the solubility parameters (K1) of the individual compounds is required. For a variety of substances encountered in cultivation broths the parameters K1 for oxygen could be evaluated from literature data and are summarized in this paper. Appropriate recommendations for applying direct and indirect predictive methods are given. Cases of failure are mentioned as well.

Keywords

Solubility Parameter Trichoderma Reesei Penicillium Chrysogenum Oxygen Solubility Nutrition Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

c

mass concentration, mg l−1

ce1

electrolyte (salt) concentration, mole l−1

cg

concentration in gas phase, mg l−1

cj

solubility of gas j, mole l−1

cj0

solubility of gas j in water, mole l−1

c1

concentration of solute l, mole l−1 or g l−1

cm

molarity, mole l−1

cn

concentration of nonelectrolyte, g l−1

cw

weight solubility, mole g −1

fj

activity coefficient of solute gas j

fj0

activity coefficient of solute gas j in water

Hi

salting-out parameter of ion i, Eq. (34), l mole−1

Hc

Henry's constant, Eq. (13), kPa l mg −1

HL

Henry's constant, Eq. (4)

Hm

Henry's constant, Eq. (2), kPa l mole−1

Hx

Henry's constant, Eq. (3), kPa

h

empirical parameter, Eq. (27), l mole −1

h+, h, hG

empirical parameters of van Krevelen-Hoftijzer model referring to cation, anion and gas, l mole−1

I

ionic strength, mole l−1

Ii

ionic strength of single ion, Eq. (35), mole l−1

kj

constant specific of gas j, l mole−1

ks

constant specific of salt, l mole−1

K

solubility parameter for nonelectrolytes (organic compounds), Eq. (37), l g−1

Ks

Sechenov constant, l mole−1

L

Ostwald coefficient

m

parameter defined by Eq. (38), l g−1

MG

molecular weight of gas, g mole−1

Mst

molecular weight of solvent, g mole−1

p

partial pressure, kPa

Ps

vapor pressure of solvent, kPa

Ptot

total pressure, kPa

r

oxygen uptake rate, mg l−1 s−1

R

rate of oxygen partial pressure decrease, kPa s−1

R

gas constant, kPa cm3 mole−1 K−1

S

Kuenen coefficient, cm3 g−1

t

temperature, °C

T

temperature, K

Vo

molar volume of gas, cm3 mole−1

VG

gas volume, cm3

VL

liquid volume, cm3

w

mass fraction

x

mole fraction

x′

electrical conductivity, Ω−1 cm−1

xi

number of ions of type i in electrolyte

Greek letters

α

Bunsen coefficient

α0

Bunsen coefficient of water

β

absorption coefficient

ϱs

density of solution

ϱst

density of solvent

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11 References

  1. 1.
    Hitchman, M. L.: Measurement of Dissolved Oxygen. John Wiley & Sons, Inc. and Orbisphere Corp., Geneva and York 1978Google Scholar
  2. 2.
    Lee, Y. H., Tsao, G. T.: Adv. Biochem. Eng. 13, 35 (1979)Google Scholar
  3. 3.
    Battino, R., Clever, H. L.: Chem. Rev. 60, 395 (1966)Google Scholar
  4. 4.
    Standard Methods for the Examination of Water and Waste Water, 13th ed., American Public Health Assoc, Amer. Waterworks Assoc. and Water Pollution Control Federation, Eds., p. 474, American Public Health Assoc, New York 1971Google Scholar
  5. 5.
    Markham, A. E., Kobe, K. A.: Chem. Rev. 28, 519 (1941)Google Scholar
  6. 6.
    Clever, H. L., Battino, R.: In Solutions and Solubilities, (Dack, M. R. J. ed.), Techniques of Chemistry 8 (1), p. 379, Wiley, New York 1975Google Scholar
  7. 7.
    Phillips, D. H., Johnson, M. J.: J. Biochem. Microbiol. Technol. Eng. 3, 277 (1961)Google Scholar
  8. 8.
    Liu, M. S., Branion, R. M. R., Duncan, D. W.: Biotech. Bioeng. 15, 213 (1973)Google Scholar
  9. 9.
    Käppeli, O., Fiechter, A.: Biotech. Bioeng. 23, 1897 (1981)Google Scholar
  10. 10.
    Lehmann, J. et al.: Poster paper presented at 6th Int. Fermentation Symp. London, Canada, July 20–25, 1980Google Scholar
  11. 11.
    Baburin, L. A., Shvinka, J. E., Viesturs, U. E.: Europ. J. Appl. Microbiol. Biotechnol. 13, 15 (1981)Google Scholar
  12. 12.
    Popović, M., Niebelschütz, H., Reuß, M.: ibid. 8, 1 (1979)Google Scholar
  13. 13.
    Quicker, G. et al.: Biotech. Bioeng. 23, 635 (1981)Google Scholar
  14. 14.
    Ben-Naim, A., Baer, S.: Trans. Faraday Soc. 60, 1736 (1964)Google Scholar
  15. 15.
    Tokunaga, J.: J. Chem. Eng. Jap. 8, 7 (1975)Google Scholar
  16. 16.
    Kojima, K., Tochigi, K.: Paper presented at 7th CHISA, section D 2.11, Prague 1981Google Scholar
  17. 17.
    Long, F. A., McDevit, W. F.: Chem. Rev. 51, 119 (1952)Google Scholar
  18. 18.
    Konnik, E. I.: Russ. Chem. Rev. 46, 577 (1977)Google Scholar
  19. 19.
    Sechenov, M.: Ann. Chim. Phys. 25, 226 (1892)Google Scholar
  20. 20.
    Debye, P., McAuley, J.: Phys. Z. 26, 22 (1925)Google Scholar
  21. 21.
    Debye, P.: Z. physik. Chem. 130, 56 (1927)Google Scholar
  22. 22.
    Bockris, J. O'M, Bowler-Reed, J., Kitchener, J. A.: Trans. Faraday Soc. 47, 184 (1951)Google Scholar
  23. 23.
    Conway, B. E., Desnoyers, J. E., Smith, A. C: Phil. Trans. Roy. Soc. London A256, 389 (1964)Google Scholar
  24. 24.
    Ruetschi, P., Amlie, R. F.: J. Phys. Chem. 70, 718 (1966)Google Scholar
  25. 25.
    McDevit, W. F., Long, F. A.: J. Am. Chem. Soc. 74, 1773 (1952)Google Scholar
  26. 26.
    Shoor, S. K., Gubbins, K. E.: J. Phys. Chem. 73, 498 (1969)Google Scholar
  27. 27.
    Masterson, W. L., Lee, T. P.: ibid. 74, 1776 (1970)Google Scholar
  28. 28.
    van Krevelen, D. W., Hoftijzer, P. J.: Chimie et Industrie; p. 168, Numéro Spéciale du XXIe Congrés International de Chimie Industrielle, Bruxelles 1948Google Scholar
  29. 29.
    Prytz, K., Hoist, H.: Ann. Physik 54, 130 (1895)Google Scholar
  30. 30.
    Usher, F. L.: J. Chem. Soc. 97, 66 (1910)Google Scholar
  31. 31.
    Morgan, J. L. R., Pyne, H. R.: J. Phys. Chem. 34, 1578 (1930)Google Scholar
  32. 32.
    v. Kiss, A., Lajtai, I., Thury, G.: Z. anorg. Chem. 233, 346 (1937)Google Scholar
  33. 33.
    Curry, J., Hooselton, C. L.: J. Am. Chem. Soc. 60, 2771 (1938)Google Scholar
  34. 34.
    Markham, A. E., Kobe, K. A.: ibid. 63, 449 (1941)Google Scholar
  35. 35.
    Harned, H. S., Davis, R.: ibid. 65, 2030 (1943)Google Scholar
  36. 36.
    Morrison, T. J., Billet, F.: J. Chem. Soc. p. 3819 (1952)Google Scholar
  37. 37.
    Gjaldbaek, J. C: Acta Chem. Scand. 7, 537 (1953)Google Scholar
  38. 38.
    Bartholme, E., Fritz, H.: Chem.-Ing.-Tech. 28, 706 (1956)Google Scholar
  39. 39.
    Novak, J., Fried, V., Pich, J.: Coll. Czech. Chem. Commun. 26, 2266 (1961)Google Scholar
  40. 40.
    Yeh, S.-Y., Peterson, R. E.: J. Pharm. Sci. 53, 822 (1964)Google Scholar
  41. 41.
    Murray, C. N., Riley, J. P.: Deep Sea Res. 18, 533 (1971)Google Scholar
  42. 42.
    Perez, J. F., Sandall, O. C: J. Chem. Eng. Data 19, 51 (1974)Google Scholar
  43. 43.
    Yasunishi, A., Yoshida, F.: ibid. 24, 11 (1979)Google Scholar
  44. 44.
    Perry, R. H., Chilton, C. H.: Chemical Engineers Handbook, 5th ed., McGraw-Hill, New York 1973Google Scholar
  45. 45.
    Wilhelm, E., Battino, R., Wilcock, R. J.: Chem. Rev. 77, 223 (1977)Google Scholar
  46. 46.
    Danckwerts, P. V.: Gas-Liquid Reactions, McGraw-Hill, New York 1970Google Scholar
  47. 47.
    Onda, K. et al.: J. Chem. Eng. Jap. 3, 18 (1970)Google Scholar
  48. 48.
    Onda, K. et al.: ibid. 3, 137 (1970)Google Scholar
  49. 49.
    Schumpe, A., Adler, I., Deckwer, W.-D.: Biotech. Bioeng. 20, 145 (1978)Google Scholar
  50. 50.
    Schumpe, A., Deckwer, W.-D.: ibid. 21, 1075 (1979)Google Scholar
  51. 51.
    Geffcken, G.: Z. phys. Chem. 49, 257 (1904)Google Scholar
  52. 52.
    Winkler, L. W.: Z. angew. Chem. 24, 341, 831 (1911)Google Scholar
  53. 53.
    MacArthur, C. G.: J. Phys. Chem. 20, 495 (1916)Google Scholar
  54. 54.
    Eucken, A., Hertzberg, G.: Z. physik. Chem. 195, 1 (1950)Google Scholar
  55. 55.
    Bruhn, G., Gerlach, J., Pawlek, F.: Z. anorg. allgem. Chem. 337, 68 (1965)Google Scholar
  56. 56.
    Davis, R. E., Horvath, G. L., Tobias, C. W.: Electrochimica acta 12, 287 (1967)Google Scholar
  57. 57.
    Khomutov, N. E., Konnik, E. I.: J. Phys. Chem. U.S.S.R. 48, 359 (1974)Google Scholar
  58. 58.
    Yosunishi, A.: J. Chem. Eng. Jap. 10, 89 (1977)Google Scholar
  59. 59.
    Findlay, A., Shen, B.: J. Chem. Soc. 101, 1459 (1912)Google Scholar
  60. 60.
    Markham, A. E., Kobe, K. A.: J. Am. Chem. Soc. 63, 1165 (1941)Google Scholar
  61. 61.
    Sada, E., Kito, S., Ito, Y.: Adv. Chem. Ser. 155, 374 (1976)Google Scholar
  62. 62.
    Lang, W.: private communicationGoogle Scholar
  63. 63.
    Lang, W., Wolf, H. U., Zander, R.: Anal. Biochem. 92, 255 (1979)Google Scholar
  64. 64.
    Solubility Data Series, Pergamon Press, OxfordGoogle Scholar
  65. 65.
    Tokunaga, J.: J. Chem. Eng. Data 20, 4 (1975)Google Scholar
  66. 66.
    Shchukarev, S. A., Tolmacheva, T. A.: J. Structural Chem. 9, 16 (1968)Google Scholar
  67. 67.
    Lubarsch, O.: Wied. Ann. 37, 524 (1889)Google Scholar
  68. 68.
    Schläpfer, P., Andykowski, T., Bukowiecki, A.: Schweizer Arch. Angew. Wiss. Tech. 15, 299 (1949)Google Scholar
  69. 69.
    Findlay, A., Shen, B.: J. Chem. Soc. 101, 1459 (1912)Google Scholar
  70. 70.
    Koch, B.: Diploma work, Univ. Hannover 1979Google Scholar
  71. 71.
    Hikita, H., Asai, S., Azuma, Y.: Can. J. Chem. Eng. 56, 371 (1978)Google Scholar
  72. 72.
    Zander, R.: Z. Naturforsch. 31c, 339 (1976)Google Scholar
  73. 73.
    Quicker, g.: diploma work, univ. hannover 1980Google Scholar
  74. 74.
    Sada, E., Kito, S., Ito, Y.: J. Chem. Eng. Jap. 7, 57 (1974)Google Scholar
  75. 75.
    Showalter, H. A., Ferguson, J. B.: Can. J. Res. 14B, 120 (1936)Google Scholar
  76. 76.
    Christoff, A.: Z. physik. Chem. 53, 321 (1905)Google Scholar
  77. 77.
    Usher, F. L.: J. Chem. Soc. 97, 66 (1910)Google Scholar
  78. 78.
    Müller, C: Z. physik. Chem. 81, 483 (1912)Google Scholar
  79. 79.
    Wishnia, A.: Proc. Natl. Acad. Sci. U.S. 48, 2200 (1962)Google Scholar
  80. 80.
    Wetlaufer, D. B., Lovrien, R.: J. Biol Chem. 239, 596 (1964)Google Scholar
  81. 81.
    Wishnia, A., Pinder, T.: Biochem. 3, 1377 (1964)Google Scholar
  82. 82.
    Wetlaufer, D. B. et al.: J. Am. Chem. Soc. 86, 508 (1964)Google Scholar
  83. 83.
    Wishnia, A.: J. Phys. Chem. 67, 2079 (1963)Google Scholar
  84. 84.
    Matheson, I. B. C, King, A. D., Jr.: J. Colloid Interface Sci. 66, 464 (1978)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Adrian Schumpe
    • 1
  • Gerd Quicker
    • 1
  • Wolf-Dieter Deckwer
    • 2
  1. 1.Institut für Technische ChemieUniversität HannoverHannover 1FRG
  2. 2.Fachbereich ChemieUniversität OldenburgOldenburgFRG

Personalised recommendations