Advertisement

Biomass separation from liquids by sedimentation and centrifugation

  • Udo Wiesmann
  • Herbert Binder
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 24)

Abstract

Sedimentation tanks and centrifuges are used in several biotechnological processes to separate the produced biomass from culture media. After reviewing different types of separators, methods of calculation are described, both for separation in low concentration regions (clarification) and in higher ones (thickening). Firstly, closed systems are considered which are useful for the measurement of settling rates. The hydrodynamic theory for free settling of single particles as well as the theory of the limiting flux for higher particle concentrations are discussed. Differences between ideal suspensions of rigid particles and non-ideal suspensions of flocks which were formed in many bio-suspensions are pointed out. Methods of calculation for continuous clarification and thickening in vertical flow tanks and tube centrifuges with continuous solid discharge (decanter) are described. As far as possible theoretical results are compared with experimental ones. Some examples for the application of sedimentation tanks and centrifuges in biotechnology are given. Finally some remarks about flocculation processes are added.

Keywords

Activate Sludge Settling Rate Solid Concentration Sludge Volume Index Settling Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Stokes, G. G.: Trans. Camb. Phil. Soc. 9, part II, 8 (1851)Google Scholar
  2. 2.
    Brauer, H.: Grundlagen der Einphasen-und Mehrphasenströmungen, p. 200, Aarau und Frankfurt a. M.: Verlag Sauerländer 1971Google Scholar
  3. 3.
    Comings, E. W., Pruiss, C. E., De Bord, C.: Ind. Eng. Chem. Process, Design and Develop. 46, 1164 (1954)Google Scholar
  4. 4.
    Anderson, A. A., Sparkman, J. E.: Chem. Eng. 2, 75 (1959)Google Scholar
  5. 5.
    Richardson, J. F., Zaki, W. N.: Chem. Eng. Sci. 3, 65 (1954)Google Scholar
  6. 6.
    Coe, H. S., Clevenger, G. H.: Trans. Am. Inst. Min. Eng. 55, 356 (1916)Google Scholar
  7. 7.
    Kynch, G. J.: Trans. Farad. Soc. 48, 166 (1952)Google Scholar
  8. 8.
    Dick, R. I., Ewing, B. B.: J. of the Sanitary Eng. Division, Aug., 9 (1967)Google Scholar
  9. 9.
    Veselind, P. A.: Treatment and disposal of waste water sludges Ann Arbot Science Publ. Inc. Ann Arbor, Michigan, USA 1974Google Scholar
  10. 10.
    Eckenfelder, W. W., Melbinger, M.: Sewage and Industrial Wastes 29, 1114 (1957)Google Scholar
  11. 11.
    Dick, R. I.: J. San. Eng. Div. ASCE 96 No. SA 2, Apr., 423 (1970)Google Scholar
  12. 12.
    Romagnoli, R. J.: Proc. of the 20th Ann. Industrial Waste Conf., p. 990 Purdue Univ., West Lafayette, Ind. May, 1974Google Scholar
  13. 13.
    Hibbert, R. L., Jones, W. F.: Water Pollution Control 73, 14 (1974)Google Scholar
  14. 14.
    Götz, P.: Untersuchungen zur Eindickung von Belebtschlamm durch Sedimentation im Standzylinder, Studienarb. am Inst. für Chemieingenieurtechnik der TU Berlin, 1981Google Scholar
  15. 15.
    Johnstone, D. W. M., Rachwal, A. J., Hanbury, M. J.: Water Pollut. Control 78, 337 (1979)Google Scholar
  16. 16.
    Reuß, M., Popovic, M., Jayanata, Y.: Fluiddynamische Probleme bei der alkoholischen Gärung, p. 65 4. Symp. Techn. Mikrobiologie, Berlin 1979Google Scholar
  17. 17.
    Hazen, A.: Americ. Soc. Civ. Eng., Paper 980, p. 45 (1904)Google Scholar
  18. 18.
    Wouda, T. W. M., Rietema, K., Ottengraf, S. P. P.: Chem. Eng. Sci. 32, 351 (1977)Google Scholar
  19. 19.
    Binder, H.: Sedimentation aus Ein-und Mehrkornsuspensionen in schragstehenden, laminar durchströmten Kreis-und Rechteckrohren, Dissertation TU-Berlin 1980Google Scholar
  20. 20.
    Camp, T. R.: Sewage Works Journal 8, 742 (1936)Google Scholar
  21. 21.
    Jao, K. M.: JWPCF 42, 220 (1970)Google Scholar
  22. 22.
    Pich, J.: Aerosol Science 3, 351 (1972)Google Scholar
  23. 23.
    Binder, H., Wiesmann, U.: Chem.-Ing.-Techn. 52, 332 (1980)Google Scholar
  24. 24.
    Oswald, P.: Untersuchungen zur Sedimentation von Hefen, Diplomarb., Inst. für Biotechn., TU-Berlin 1980Google Scholar
  25. 25.
    Walsh, T. J., Bungay, H. R.: Biotech. Bioeng. 21, 1081 (1979)Google Scholar
  26. 26.
    Batel, W.: Einführung in die Korngrößenmeßtechnik, p. 16 Berlin: Springer 1964Google Scholar
  27. 27.
    Schmidt, M., Wiesmann, U.: Chem.-Ing.-Techn. 49, 51 (1977)Google Scholar
  28. 28.
    Richtlinien für die Bemessung von einstuflgen Belebungsanlagen mit Anschlußwerten über 10000 Einwohnergleichwerten, ATV-Regelwerte Abwasser, Arbeitsblatt A 131, Entwurf April 1980Google Scholar
  29. 29.
    Resch, A.: Untersuchungen an vertikal durchströmten Nachklärbecken von Belebungsanlagen, Berichte aus Wassergütewirtschaft und Gesundheitsingenieurwesen; Inst. für Bauingenieurwesen V Techn. Univ. München Nr. 29 (1981)Google Scholar
  30. 30.
    Dick, R. I.: J. Wat. Pol. Contr. Fed. 48, 633 (1976)Google Scholar
  31. 31.
    Dick, R. I., Vesilind, P. A.: J. Wat. Pol. Contr. Fed. 41, 1285 (1969)Google Scholar
  32. 32.
    Yoshioka, N.: J. Soc. Chem. Engng. 2, 66 (1957)Google Scholar
  33. 33.
    Dick, R. I., Young, K. W.: Proc. 27. Ann. Ind. Waste Conf. Purdue Univ. Lafayette Ind. 1972Google Scholar
  34. 34.
    Binder, H., Putnaerglis, A., Wiesmann, U.: Numerical and experimental results for clarification and thickening sedimentation in vertical flow tanks, Vienna Euromech 144 (14.–16. 9. 81)Google Scholar
  35. 35.
    Mynhier, M. D., Grady, Jr., C.P. L.: J. Env. Engng. Div. ASCE 101, 829 (1975)Google Scholar
  36. 36.
    Naito, M., Takamatsu, T., Fan, L. T,: Water Research 3, 433 (1969)Google Scholar
  37. 37.
    Putnaerglis, A., Wiesmann, U.: Die Produktivität von Anlagen mit Biomassenrückführung bestehend aus Bioreaktor und Sedimentationsapparat, paper presented at the Sitzung des GVC-Fachausschusses Bioverfahrenstechnik Bad Dürkheim 25.–26. 5. 1981Google Scholar
  38. 38.
    Benefield, L. D., Randall, C. W.: Biological Process Design for Waste water Treatment, Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632, 1980Google Scholar
  39. 39.
    Sutton, P. M. et al.: Oxitron System Fluidized Bed Waste Water Treatment Process: Development and Demonstration Studies; paper presented at the Joint Ann. Conf. of the Air Pollution Control Ass. on Pollution Control Ass. of Ontario, Toronto, Canada, April 1979Google Scholar
  40. 40.
    Pöpel, F.: Belebungsanlagen — Leistung, Berechnung, Entwurf — Deutscher Fachzeitschriften Verlag, Wiesbaden 1973Google Scholar
  41. 41.
    Barth, E. F.: Water Research 6, 481 (1972)Google Scholar
  42. 42.
    Anderson, G. K., Donnelly, T.: New Processes of Waste Water Treatment and Recovery, p. 75 Chichester: Ellis Horwood, Ltd. 1978Google Scholar
  43. 43.
    Rehm, H.-J.: Industrielle Mikrobiol., p. 283 Berlin: Springer 1967Google Scholar
  44. 44.
    Braun, R. et al.: Process Biochem. 14, 16 (1979)Google Scholar
  45. 45.
    Faust, U., Präve, P., Sukatsch, D. A.: Kontinuierliche Äthanolherstellung durch ein Gärverfahren der HOECHST/UHDE-Biotechnologie, p. 37 4. Symp. Techn. Mikrobiol., Berlin 1979Google Scholar
  46. 46.
    Hang, Y. D.: Process Biochem. 12, 37 (1977)Google Scholar
  47. 47.
    Trawinski, H.: Zentrifugen und Hydrozyklone, Ullmanns Encyklopädie der Technischen Chemie, Vol. 2, p. 200, Weinheim/Bergstr.: Verlag Chemie 1972Google Scholar
  48. 48.
    Ambler, C. M.: Chem. Eng. Prog. 48, 3 (1952)Google Scholar
  49. 49.
    Veselind, P. A.: J. Envir. Eng. Div. ASCE, 100 (1974)Google Scholar
  50. 50.
    BIOFUGATR-Verfahren, information paper of the Wehrle Werk AG, Germany, EmmedingenGoogle Scholar
  51. 51.
    Tischer, W.: Abwassertechnik 19, 34 (1978)Google Scholar
  52. 52.
    anonymus: Aufbereitungstechnik 18, 493 (1977)Google Scholar
  53. 53.
    Birkholz, I., Lenz, G.: Korrespondenz Abwasser 25, 158 (1978)Google Scholar
  54. 54.
    Becker, K. P., Wall, C. J.: Chem. Eng. Progress 72, 61 (1976)Google Scholar
  55. 55.
    Zeper, J., Pepping, R.: Water Research 6, 507 (1972)Google Scholar
  56. 56.
    Rosen, K.: Process Biochem. 13, 26 (1978)Google Scholar
  57. 57.
    Birkenstaedt, J. W., Faust, U., Sambeth, W.: Process Biochem. 12, 7 (1977)Google Scholar
  58. 58.
    Seipenbusch,.: Verfahrenstechnische Probleme bei der Aufarbeitung von SCP, paper presented at the Sitzung des GVC-Fachausschusses Bioverfahrenstechnik, Stuttgart 1.–2. 4. 1976Google Scholar
  59. 59.
    Ellingsen, T., Mohr, V.: Process Biochem. 13, 14 (1979)Google Scholar
  60. 60.
    Atkinson, B., Daoud, I. S.: Microbial Floes and Flocculation in Fermentation Process Engineering, Adv. Biochem. Eng., Vol. 4, p. 41, Berlin: Springer 1976Google Scholar
  61. 61.
    Bratby, J.: Coagulation and Flocculation, Uplands Press Ltd., Croydon 1980Google Scholar
  62. 62.
    Aiba, S., Nagatani, M.: Separation of Cells from Culture Media, Adv. Biochem. Eng. Vol. 1, p. 31 Berlin: Springer 1971Google Scholar
  63. 63.
    Wills, R. F.: Sedimentation and Flocculation in Effluent Treatment, Biochemical and Biological Eng. Science, Vol. 1, p. 346 London: Academic Press 1967Google Scholar
  64. 64.
    Fair, G. M., Geyer, J. Ch., Okun, D. A.: Water and Wastewater Engineering Vol. 2: Water Purification and Wastewater Treatment and Disposal New York: John Wiley 1968Google Scholar
  65. 65.
    Trawinski, H.: Chem.-Ing.-Techn. 39, 661 (1959)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Udo Wiesmann
    • 1
  • Herbert Binder
    • 1
  1. 1.Institut für ChemieingenieurtechnikTechnische Universität BerlinBerlin 10FRG

Personalised recommendations