Purification of enzymes by liquid-liquid extraction

  • Maria-Regina Kula
  • Karl Heinz Kroner
  • Helmut Hustedt
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 24)


The article reviews the current status of the application of aqueous two-phase systems for the extractive purification of enzymes, especially with regard to large-scale processing. The method can be used for the separation of proteins from cell debris as well as for further purification. The latter can be performed by a series of single step partitions, and apparently also by continuous multistage processes. The specificity and selectivity of extraction can be enhanced by introducing specific or general ligands. Scale-up of extractive enzyme purification is relatively simple utilizing commercially available equipment and machinery common in the chemical industry. Besides the technical performance, economic considerations also indicate the feasibility of the method at production scale.


Partition Coefficient Polyethylene Glycol Formate Dehydrogenase Bottom Phase Binodal Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



concentration in the top phase (U l−1, kg l−1, mol l −1)


concentration in the bottom phase (U l−1, kg l−1, mol l−1)


emergent concentration (U l−1, kg ;−1, mol l−1)


initial concentration (U l−1, kg l−1, mol l−1)


diameter of droplet or particle (m)


limit droplet, (particle) diameter (m)


extraction factor


Faraday constant (96,485 C mol−1)


clarifying surface (m2)


earth acceleration (m s−1)


partition ratio


Boltzmann constant (1.381×10−23 JK−1)


partition coefficient


inhibition constant (mol l−1)


Michaelis Menten constant (mol l−1)


partition coefficient of protein


partition coefficient of protein when phase potential or charge of protein is zero


partition coefficient of small anion


partition coefficient of small cation


partition coefficient of enzyme


partition coefficient of polyethylene glycol dye-derivative


molecular weight (g mol−1)


weight average molecular weight (g mol−1)


number average molecular weight (g mol−1)


relative molecular weight


Newton (kg m s−2)


milli Newton (10−3 kg m s−2)


number of theoretical stages


number of binding sites


milli Pascal (10−3 N m−2)


purity of top phase (%)


purity of bottom phase (%)


volumetric flow of bottom phase (l h−1)


volumetric flow of feed (l h−1)


limiting flow capacity (l h−1)


volumetric flow through the nozzles (l h−1)


volumetric flow of top phase (l h−1)


radius of interphase position (m)


radius of upper phase outlet (m)


radius of lower phase outlet (m)


general gas constant (8.314 J mol−1 K−1)


separation efficiency


absolute temperature (K)


unit of enzyme activity (µMol min−1)


volume of top phase (l)


volume of bottom phase (l)


volume ratio of overflow and underflow


volume, ratio of upper and lower phase


sedimentation velocity (m s−1)


yield of enzyme in top phase (%)


yield of enzyme in the bottom phase (%)


number of charges of protein


number of charges of cation


number of charges of anion


angle (degree)


density of upper phase (kg m−3)


density of lighter phase (kg m−3)


density difference (kg m−3)


proportionality factor of interacting forces (J g mol−1)


Sigma factor, for comparism of centrifuges (m2)


interphase potential (mV)


angular velocity (rad s−1)


dynamic viscosity (kg s−1 m−1)


limiting viscosity (kg s−1 m−1)


residence time (s)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12 References

  1. 1.
    Loncin, M.: Die Grundlagen der Verfahrenstechnik in der Lebensmittelindustrie, Sauerländer, Aarau u. Frankfurt/M. 1969Google Scholar
  2. 2.
    Higgins, J. J. et al.: Biotech. Bioeng. 20, 159 (1978)Google Scholar
  3. 3.
    Mosqueira, F. G. et al.: Biotech. Bioeng. 23, 335 (1981)Google Scholar
  4. 4.
    Kula, M.-R. et al.: German Pat. 2639129, US-Pat. 4,144,130Google Scholar
  5. 5.
    Kula, M.-R.: Extraction and Purification of Enzymes in: Applied Biochem. and Bioeng. (Wingard, L. B. jr., Katchalski-Katzir, E., Goldstein, L., eds.), Vol. 2, New York: Academic Press, New York 1979, p. 71Google Scholar
  6. 6.
    Beijerinck, M. W.: Zentr. Bl.-Bakt. 2, 627, 698 (1896)Google Scholar
  7. 7.
    Beijerinck, M. W.: Kolloid-Z. 7, 16 (1910)Google Scholar
  8. 8.
    Albertsson, P. Å.: Partition of Cell Particles and Macromolecules, 2nd ed., Wiley Interscience, New York 1971Google Scholar
  9. 9.
    Hustedt, H. et al.: Biotech. Bioeng. 20, 1989 (1978)Google Scholar
  10. 10.
    Hustedt, H. et al.: unpublished resultsGoogle Scholar
  11. 11.
    Kula, M.-R., Johansson, G., Bückmann, A. F.: Biochem. Soc. Trans. 7, 1 (1979)Google Scholar
  12. 12.
    Kroner, K. H. et al.: in: Affinity Chromatogr. and Related Techniques, (Gribnau, T. C. J., Visser, J., Nivard, R. J. F., eds.), p. 491. Elsevier, Amsterdam 1982Google Scholar
  13. 13.
    Hustedt, H., Kroner, K. H., Kula, M.-R.: Large-Scale Isolation of Fumarase by Partition, Poster presented at the 1. Eng. Foundation Conf. on Advances in Fermentation Products Recovery Process Techn., Banff, Canada 1981Google Scholar
  14. 14.
    Kroner, K. H. et al.: J. Chem. Techn. Biotechn., 32, 130 (1982)Google Scholar
  15. 15.
    Vollmert, B.: Polymer Chemistry, Springer, Berlin 1973Google Scholar
  16. 16.
    Brønstedt, J. N. Z.: Z. phys. Chem. A., 2571 (1931) (Bodenstein-Festb.)Google Scholar
  17. 17.
    Brønstedt, J. N. Z., Warming, E.: Z. phys. Chem. A 155, 343 (1931)Google Scholar
  18. 18.
    Kroner, K. H., Hustedt, H., Kula, M.-R.: Biotechn. Bioeng., 24, 1015 (1982)Google Scholar
  19. 19.
    Hustedt, H., Kula, M.-R.: Eur. J. Biochem. 74, 191 (1977)Google Scholar
  20. 20.
    Foster, P. R., Dunnill, P., Lilly, M. D.: Biochim. Biophys. Acta 317, 505 (1973)Google Scholar
  21. 21.
    Hönig, W., Kula, M.-R.: Analyt. Biochem. 72, 502 (1976)Google Scholar
  22. 22.
    Johansson, G.: Biochim. Biophys. Acta 221, 387 (1970)Google Scholar
  23. 23.
    Ricketts, C. R.: Progr. Org. Chem. 5, 73 (1961)Google Scholar
  24. 24.
    Albertsson, P. Å.: Endeavour 1, 69 (1977)Google Scholar
  25. 25.
    Schönfeldt, N.: Grenzflächenaktive Äthylenoxid-Addukte, Wissenschaftl. Verlagsges., Stuttgart 1976Google Scholar
  26. 26.
    Bückmann, A. F.: German Pat. 2841414Google Scholar
  27. 27.
    Bückmann, A. F., Morr, M., Johansson, G.: Makromol. Chem. 182, 1379 (1981)Google Scholar
  28. 28.
    Morr, M.: unpublished resultsGoogle Scholar
  29. 29.
    Menge, U. et al.: German Pat. Application, Offenlegungsschrift DE 2943016A1Google Scholar
  30. 30.
    Flanagan, S. D., Barondes, S. H.: J. Biol. Chem. 250, 148 (1975)Google Scholar
  31. 31.
    Hubert, P. et al.: FEBS Letters 65, 169 (1976)Google Scholar
  32. 32.
    Takerkart, G., Segard, E., Monsigny, M.: FEBS Letters 42, 218 (1974)Google Scholar
  33. 33.
    Mosbach, K.: Biochem. Soc. Trans. 2, 1294 (1974)Google Scholar
  34. 34.
    Ohlsson, R., Brodelius, P., Mosbach, K.: FEBS Letters 25, 234 (1972)Google Scholar
  35. 35.
    Easterday, R., Easterday, I. Affinity Chromatogr. of Kinases and Dehydrogenases on Sephadex and Sepharose Dye Derivatives in: Immobilized Biochemicals and Affinity Chromatogr., (Dunlop, R. ed.), p. 123. Plenum, New York 1974Google Scholar
  36. 36.
    Amicon Corporation “Dye-Ligand Chromatogr.”, Lexington/USA 1980Google Scholar
  37. 37.
    Kula, M.-R. et al.: FEBS Special Meet, on Enzymes, Abstract S 6–30, Dubrovnik/Yugoslavia 1979Google Scholar
  38. 38.
    Johansson, G., Hartmann, A., Albertsson, P. Å.: Eur. J. Biochem. 33, 379 (1973)Google Scholar
  39. 39.
    Kroner, K. H. et al.: Biotech. Bioeng. 20, 1967 (1978)Google Scholar
  40. 40.
    Leuchtenberger, W. et al.: 2nd Europ. Congr. of Biotechn., (Abstracts of Communications No 47), Eastbourne 1981Google Scholar
  41. 41.
    Shanbag, V. P.: Biochim. Biophys. Acta 320, 517 (1973)Google Scholar
  42. 42.
    Müller, E., Kreichelt, H. J.: Vt-Verfahrenstechnik 13, 142 (1979)Google Scholar
  43. 43.
    Hustedt, H. et al.: in: Enzyme Eng. (Weetall, H. H., Royer, G. P., eds.), Vol. 5, p. 45. Plenum, New York 1980Google Scholar
  44. 44.
    in Treybal, R.: Liquid Extraction, 2nd ed., Me. Graw Hill, New York 1963Google Scholar
  45. 45.
    Hanson, C.: Recent Advances in Liquid-Liquid Extraction, Pergamon, Oxford 1971Google Scholar
  46. 46.
    Blomquist, G., Albertsson, P. Å.: J. Chromat. 73, 125 (1972)Google Scholar
  47. 47.
    Ito, Y. et al.: Sep. Sci. Technol. 15, 1589 (1980)Google Scholar
  48. 48.
    Kula, M.-R. et al.: in: Biochem. Eng. II (Constantinidis, A., Vieth, W. R., Venkatasubramanian, K., eds) Annals N.Y. Academy of Science, Vol. 369, 341 (1981)Google Scholar
  49. 49.
    Scheibel, E. G.: in: Techniques of Organic Chem., 2nd ed., (Weißberger, A. ed.), Vol. 3, part 1, p. 332. Interscience, New York 1956Google Scholar
  50. 50.
    Coleby, J.: Brit. Pat. 860880, 972035, 1037573Google Scholar
  51. 51.
    Hemfort, H.: Verfahrenstechnik 4 (5), 167 (1970)Google Scholar
  52. 52.
    Murkes, J.: Filtration Separation, Mar./Apr., 112 (1966)Google Scholar
  53. 53.
    Cox, D. P.: The Biodegradation of Polyethylene Glycols in: Advances in Applied Microbiology (Perlman, D., ed.), Vol. 23, p. 173. Academic Press, New York 1978Google Scholar
  54. 54.
    Bückmann, A. F., Morr, M., Kula, M.-R.: IUPAC 26th Int. Symp. on Macromolecules, Short communications, (Lüdenwald, I., Weis, R., eds.), Vol. III, p. 1551, 1979Google Scholar
  55. 55.
    Schütte, H. et al.: Eur. J. Biochem. 62, 151 (1976)Google Scholar
  56. 56.
    Hustedt, H. et al.: First Europ. Congr. on Biotechn. Interlaken, Preprints, Part 1, p. 48, 1978Google Scholar
  57. 57.
    Wichmann, R. et al.: Biotech. Bioeng. 23, 2789 (1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Maria-Regina Kula
    • 1
  • Karl Heinz Kroner
    • 1
  • Helmut Hustedt
    • 1
  1. 1.Gesellschaft für Biotechnologische Forschung mbHBraunschweig-StöckheimFRG

Personalised recommendations