Commutative algebra and computer algebra

  • D. Lazard
2. Algebraic Structures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 144)


Primary Ideal Local Ring Commutative Ring Polynomial Ring Computer Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bay]
    D. Bayer. A generalisation of row reduction and the euclidean algorithm. Preprint, Harvard University.Google Scholar
  2. [Bou]
    N. Bourbaki. Algèbre commutative. Hermann (Paris)Google Scholar
  3. [Buc]
    B. Buchberger. A criterion for detecting unneccessary reductions in the constructions of Gröbner bases. In EUROSAM'79, Lect. Notes in Computer Sc. 72 (Springer, Berlin, 1979), p. 3–21.Google Scholar
  4. [Cha]
    F. Chaoui. To appear.Google Scholar
  5. [Dav 1]
    J.H. Davenport. The computerization of algebraic geometry. In EUROCAM'79, p. 119–133.Google Scholar
  6. [Dav 2]
    J.H. Davenport. Integration of algebraic functions. In EUROCAM'79, p. 415–425.Google Scholar
  7. [Dav 3]
    J.H. Davenport. On the integration of algebraic functions. Lect. Notes in Computer Sc. no 102 (Springer, 1981)Google Scholar
  8. [Her]
    G. Herman. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), p. 736–788.CrossRefGoogle Scholar
  9. [Ha. St]
    G. Havas, L. Sterling. Integer matrices and abelian groups. In EUROCAM'79, p. 431–451.Google Scholar
  10. [He.Si]
    J. Heintz, M. Sieveking. Absolute primality of polynomials is decidable in random polynomial time in the number of variables.Google Scholar
  11. [Kap]
    I. Kaplanski. Commutative rings. Allyn and Bacon (Boston, 1970)Google Scholar
  12. [K.B.]
    R. Kannan,A. Bachen. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. Siam J. Comput, 8 (1979), p. 499–507.CrossRefGoogle Scholar
  13. [Laz 1]
    D. Lazard. Elimination non linéaire. In Symbolic computational methods and applications (St Maximin, 1977), p. 284–286.Google Scholar
  14. [Laz 2]
    D. Lazard. Algèbre linéaire sur k[X1,...,Xn] et élimination. Bull. Soc. Math. France 105 (1977), p. 165–190.Google Scholar
  15. [Laz 3]
    D. Lazard. Systems of algebraic equations. In EUROCAM'79, p. 88–94.Google Scholar
  16. [Laz 4]
    D. Lazard. Résolution des systèmes d'équations algébriques. Theor. Comp. Sciences 15 (1981), p. 77–110.CrossRefGoogle Scholar
  17. [Mora]
    F. Mora. An algorithm to compute standard bases. These proceedings.Google Scholar
  18. [Ric]
    F. Richman. Constructive aspects of noetherian rings. Proc. Amer. Math. Soc. 44 (1974), p. 436–441.Google Scholar
  19. [S.Z.]
    P. Samuel, O. Zariski. Commutative algebra. Van Nostrand (Princeton, 1958).Google Scholar
  20. [Sei 1]
    A. Seidenberg. Constructions in algebra. Trans. Amer. Math. Soc. 197 (1974), p. 273–313.Google Scholar
  21. [Sei 2]
    A. Seidenberg. Constructions in a polynomial ring over the ring of integers. American J. of Math. 100, p. 685–703.Google Scholar
  22. [Sei 3]
    A. Seidenberg. Construction of the integral closure of a finite integral domain. Rend. Sem. Math. Fis. Milano, 40 (1970), p. 101–120.Google Scholar
  23. [Sei 4]
    A. Seidenberg. Construction of the integral closure of a finite integral domain II. Proc. Amer. Math. Soc. 52 (1975), p. 368–372.Google Scholar
  24. [Sei 5]
    A. Seidenberg. On the impossibility of some constructions in polynomial rings. Atti Convegni Lincei 1973, p. 77–85.Google Scholar
  25. [Sto]
    G. Stolzenberg. Constructive normalization of an algebraic variety. Bull. Amer. Math. Soc. 74 (1968), p. 595–599.Google Scholar
  26. [Tou]
    E. Tournier. An algebraic form of a solution of a system of linear equations with constant coefficients. In EUROCAM'79, p. 153–163.Google Scholar
  27. [Yun]
    Y.Y. Yun. On algorithms for solving systems of polynomial equations. ACM SIGSAM Bull. 27 (1973), p. 19–25.Google Scholar
  28. [F.S]
    A. Fröhlich, J.C. Shepherdson. Effective procedures in field theory. Philos. Trans. roy. Soc. London, Ser. A, 248 (1955) p. 407–432.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • D. Lazard
    • 1
  1. 1.Mathématiques — InformatiqueUniversité de PoitiersPoitiers

Personalised recommendations