Lattices and factorization of polynomials over algebraic number fields

  • A. K. Lenstra
1. Algorithms I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 144)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Cantor & H. Zassenhaus, A New Algorithm for Factoring Polynomials Over Finite Fields, Math. Comp. 36 (1981) pp 587–592.Google Scholar
  2. 2.
    U. Dieter, How to calculate Shortest Vectors in a Lattice, Math. Comp. 29 (1975), pp 827–833.Google Scholar
  3. 3.
    A.K. Lenstra, Lattices and Factorization of Polynomials, Mathematisch Centrum, Amsterdam, Report IW 190/81.Google Scholar
  4. 4.
    H.W. Lenstra Jr., Integer programming with a fixed number of variables, University of Amsterdam, Department of Mathematics, Report 81-03.Google Scholar
  5. 5.
    B.M. Trager, Algebraic Factoring and Rational Function Integration, Proc. SYMSAC 76, pp 219–226.Google Scholar
  6. 6.
    B.L. van der Waerden, Moderne Algebra, Springer, Berlin, 1931.Google Scholar
  7. 7.
    P.S. Wang, Factoring Multivariate Polynomials over Algebraic Number Fields, Math. Comp. 30 (1976), pp 324–336.Google Scholar
  8. 8.
    P.S. Wang, An Improved Multivariate Polynomial Factoring Algorithm, Math. Comp. 32 (1978), pp 1215–1231.Google Scholar
  9. 9.
    P.J. Weinberger & L.P. Rothschild, Factoring Polynomials over Algebraic Number Fields, ACM Transactions on Math. Software, 2 (1976) pp 335–350.CrossRefGoogle Scholar
  10. 10.
    H. Zassenhaus, On Hensel Factorization, I, J. of Number Theory 1 (1969), pp 291–311.CrossRefGoogle Scholar
  11. 11.
    H. Zassenhaus, A Remark on the Hensel Factorization Method, Math. Comp. 32 (1978), pp 287–292.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • A. K. Lenstra
    • 1
  1. 1.Mathematisch CentrumAmsterdamThe Netherlands

Personalised recommendations