Advertisement

An algorithm to obtain formal solutions of a linear homogeneous differential equation at an irregular singular point

  • J. Della Dora
  • Cl. Di Crescenzo
  • E. Tournier
8. Applications II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 144)

Abstract

The algorithm DELIRE (Linear Differential Equation Irregular and REgular singularities) presented in this paper gives the formal solutions (normal and sub-normal) at an irregular singular point of a linear homogeneous differential operator, whose coefficients are formal Puiseux series [11].

This algorithm (greatly inspired by recent works of B. Malgrange) is based on the use of the Newton polygon of the differential operator studied.

The part of DELIRE which gives the solutions in the neighborhood of singular regular points has been presented in [3].

DELIRE is included in the general algorithm said DESIR (Differential Equation System Irregular and Regular singularities), which deals with linear homogeneous differential system in the complex plan.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    RAMIS, J.P.: Dévissage Gevrey. Astérisque S.M.F. 59–60, (1978), pp. 173–204.Google Scholar
  2. [2]
    MALGRANGE, B.: Sur la réduction formelle des équations différentielles à singularités irrégulières. (preprint).Google Scholar
  3. [3]
    DELLA DORA, J. et TOURNIER, E.: Proceeding of the 1981 ACM Symposium on Symbolic and algebraic computation. SYMSAC-81 (page 25–29) (Edit. Paul S. Wang).Google Scholar
  4. [4]
    WASOW, W.: Asymptotic expansions for ordinary differential equations. R.E. Krieger publishing company, Huntington, New-York (1965).Google Scholar
  5. [5]
    DELLA DORA, J. et TOURNIER, E.: Solutions formelles d'équations différentielles au voisinage de points singuliers réguliers. Rapport de Recherche, IMAG no 239.Google Scholar
  6. [6]
    DELLA DORA, J. et TOURNIER, E.: Les bases d'un algorithme d'obtention des solutions formelles d'une équation différentielle linéaire homogène en un point singulier irrégulier. Rapport de Recherche IMAG, No 266.Google Scholar
  7. [7]
    DELLA DORA, J.; DI CRESCENZO, Cl. et TOURNIER, E.: Algorithme général de résolution formelle d'une équation différentielle linéaire homogène au voisinage d'un point singulier. (preprint).Google Scholar
  8. [8]
    HEARN, A.C.: REDUCE-2 user's manual, Univ. of Utah (1973).Google Scholar
  9. [9]
    WATANABE, S.: Formula manipulations solving linear ODEs II, Publ. RIMS Kyoto Univ. vol. 11, no 2 (1976), pp. 297–337.Google Scholar
  10. [10]
    NEWTON, I.: La methode des fluxions et des suites infinies. traduit par De BUFFON 1738. Librairie scientifique Albert Blanchard (1966)Google Scholar
  11. [11]
    PUISEUX, M. V.: Recherches sur les fonctions algebriques. Journal de Mathematiques pures et appliquées, no15 (1850), pp. 365–480.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • J. Della Dora
    • 1
  • Cl. Di Crescenzo
    • 1
  • E. Tournier
    • 1
  1. 1.Laboratoire IMAGGrenoble cédexFrance

Personalised recommendations