Implementation of differential geometric objects and functions with an application to extended Maxwell equations

  • P. K. H. Gragert
  • P. H. M Kersten
5. Applications I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 144)


Maxwell Equation Differential Form Exterior Derivative Wedge Product Overdetermined System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Estabrook F.B.: Some Old and New Techniques for the Practical use of Exterior Differential Forms. Lecture Notes nr. 515, Bäcklund Transformations. Nashville, Tennessee 1974, Springer.Google Scholar
  2. [2]
    Harrison B.K. & Estabrook F.B.: Geometric Approach to Invariance Groups and Solutions of Partial Differential Equations. Journal of Math. Phys., Vol. 12(1971) pp 653–666.CrossRefGoogle Scholar
  3. [3]
    Edelen D.G.B.: Isovector Methods for Equations of balance, Sijthoff & Noordhoff 1980, Alphen aan de Rijn, The Netherlands. (The REDUCE statements are available too in a paper: Edelen, Comp. & Math. with Appls. 1980, pp 415–424)Google Scholar
  4. [4]
    Gragert P.K.H.: Symbolic Computations in Prolongation Theory, thesis 1981, Twente University of Technology, Enschede, The Netherlands.Google Scholar
  5. [5]
    Kersten P.H.M.: The Computation of the Infinitesimal Symmetries for (Extended) Vacuum Maxwell Equations Using REDUCE 2. Memorandum nr. 365 (1981), Twente University of Technology, Enschede, The Netherlands.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • P. K. H. Gragert
    • 1
  • P. H. M Kersten
    • 1
  1. 1.Twente University of TechnologyEnschedeThe Netherlands

Personalised recommendations