Computer algebra systems viewed by a notorious user

  • J. A. van Hulzen
5. Applications I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 144)


Are design and use of computer algebra systems disjoint or complementary activities? Raising and answering this question are equally controversial, since a clear distinction between languages features and library facilities is hard to make. Instead of even attempting to answer this rather academic question it is argued why it is reasonable to raise related questions: Is SMP a paradox? Is it realistic to neglect inaccurate input data? Is a very high level programming language instrumental for equal opportunity employment in scientific research?


Computer Algebra Computer Algebra System Garbage Collection Algebraic Computation Equal Opportunity Employment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allendörfer, U., Kirchner, R.: PASCAL-SC Bedienungsanleitung. Univ. Kaiserslautern (1982).Google Scholar
  2. [2]
    Barton, D., Willers, I.M., Zahar, R.V.M.: The automatic solution of systems of ordinary differential equations by the method of Taylorseries, Proceedings Math. Software (J. Rice ed.), 369–390. New York: Academic Press (1971).Google Scholar
  3. [3]
    Brown, W.S.: ALTRAN user's manual, 4-th ed. Murray Hill, N.J.: Bell Labs.(1977).Google Scholar
  4. [4]
    Brown, W.S., Hearn, A.C.: Application of symbolic mathematical computations. Comp.Phys.Comm. 17, 207–215 (1979).CrossRefGoogle Scholar
  5. [5]
    Calmet, J., van Hulzen, J.A.: Application of algebraic computation methods in physics. Fortschritte der Physik (to appear).Google Scholar
  6. [6]
    Calmet, J., van Hulzen, J.A.: Computer algebra applications. Computing Suppl.1982 (to appear).Google Scholar
  7. [7]
    Clenshaw, C.W., Olver, F.W.J.: An unrestricted algorithm for the exponential function. SIAM J. Numer.Anal. 17, 2, 310–331 (1980).CrossRefGoogle Scholar
  8. [8]
    Cole, C.A., Wolfram, S.: SMP-A symbolic manipulation program, Proceedings SYMSAC '81 (P.S. Wang, ed.), 20–22. New York: ACM (1981).Google Scholar
  9. [9]
    Cole, C.A., Wolfram, S. e.a.: SMP-handbook, version 1. Cal.Inst.of Technology (1981).Google Scholar
  10. [10]
    Collins, G.E.: The SAC-1 system: an introduction and survey. Proceedings SYMSAM 2 (S.R. Petrick, ed.), 144–152. New York: ACM (1971).Google Scholar
  11. [11]
    Collins, G.E.: Infallible calculations of polynomial zeros to specified precision. Mathemtical Software III (J.R. Rice, ed.), 35–68. New York: Academic Press (1977).Google Scholar
  12. [12]
    Collins, G.E.: ALDES and SAC-2 now available. SIGSAM Bulletin 14,2, 19. New York: ACM (1980).Google Scholar
  13. [13]
    Cowan, R., Griss, M.: Hashing, the key to rapid pattern matching. Symbolic and Algebraic Computation (E.W. Ng, ed.), Springer LNCS series nr.72, 266–278. Berlin-Heidelberg-New York: Springer (1979).Google Scholar
  14. [14]
    Engeli, M.: An enhanced SYMBAL system. SIGSAM Bulletin 9,4, 21–29. New York: ACM (1975).Google Scholar
  15. [15]
    Engelman, C.: MATHLAB: a program for on-line machine assistance in symbolic computations. Spartan Books Vol.1, 413–421. Wash.D.C.(1965).Google Scholar
  16. [16]
    Engelman, C.: MATHLAB-68, Proceedings IFIP 68, 462–467. Amsterdam: North Holland (1969).Google Scholar
  17. [17]
    Fateman, R.J.: The MACSYMA "big-floating-point arithmetic system. Proceedings SYMSAC '76 (R.D. Jenks, ed.), 209–213. New York: ACM (1976).Google Scholar
  18. [18]
    Fitch, J.P.: CAMAL user's manual. Univ. of Cambridge, Comp.Lab. (1975).Google Scholar
  19. [19]
    Fitch, J.P.: User based integration software. Proceedings SYMSAC '81 (P.S. Wang, ed.), 245–248. New York: ACM (1981).Google Scholar
  20. [20]
    Foderaro, J.K., Fateman, R.J.: Characterization of VAX MACSYMA. Proceedings SYMSAC '81 (P.S. Wang, ed.), 14–19. New York: ACM (1981).Google Scholar
  21. [21]
    Frick, I.: SHEEP user's manual. Univ. of Stockholm (1977).Google Scholar
  22. [22]
    Gragert, P., Kersten, P.: Implementation of differential geometric objects and functions and an application to extended Maxwell equations. These proceedings.Google Scholar
  23. [23]
    Gregory, R.T.: The use of finite-segment p-adic arithmetic for exact computation. BIT 18, 282–300 (1978).Google Scholar
  24. [24]
    Griesmer, J.H.: The state of symbolic computation, SIGSAM Bulletin, 13,3, 25–28. New York: ACM (1979).Google Scholar
  25. [25]
    Griesmer, J.H., Jenks, R.D., Yun, D.Y.Y.: SCRATCHPAD user's manual. Yorktown Heights: IBM Research, Report RA 70 (1975).Google Scholar
  26. [26]
    Grünbauer, B.R.: Een verkennend onderzoek naar de mogelijkheden van eindige segment p-adische arithmetiek. B Sc Thesis, Twente University of Technology (1982).Google Scholar
  27. [27]
    Hearn, A.C.: Computation of algebraic properties of elementary particle reactions using a digital computer. Comm. ACM 9, 573–577 (1966).CrossRefGoogle Scholar
  28. [28]
    Hearn, A.C.: REDUCE user's manual. Univ. of Utah: Report UCP-19 (1973).Google Scholar
  29. [29]
    Hearn, A.C.: The personal algebra machine. Proceedings IFIP 80, 621–628. Amsterdam: North Holland (1980).Google Scholar
  30. [30]
    Hehner, E.C.R., Horspool, R.N.S.: A new representation of the rational numbers for fast easy arithmetic. SIAM J. Comput. 8,2, 124–134 (1979); Corrigendum, SIAM J. Comput. 9,1, 217 (1980).CrossRefGoogle Scholar
  31. [31]
    Hulshof,B.J.A., van Hulzen, J.A., Smit, J.: Code optimization facilities applied in the NETFORM context. Twnte University of Technology, TW-memorandum 368 (1981).Google Scholar
  32. [32]
    Jefferys, H.: FORTRAN-based listprocessor for Poissonseries, Celest.Mech.2, 474–480 (1970).CrossRefGoogle Scholar
  33. [33]
    Jefferys, H.: A precompiler for the formula manipulation system TRIGMAN, Celest.Mech. 6, 117–124 (1972).CrossRefGoogle Scholar
  34. [34]
    Jenks, R.D., Trager, B.M.: A language for computational algebra. Proceedings SYMSAC '81 (P.S. Wang, ed.), 6–13. New York: ACM (1981).Google Scholar
  35. [35]
    Kanada, Y., Sasaki, T.: LISP based "big-float" system is not slow. SIGSAM Bulletin 15,2, 13–19. New York: ACM (1981).Google Scholar
  36. [36]
    Kemp, P.: Symbolic-numeric interface (abstract), SIGSAM Bulletin 15,2, 6. New York:ACM (1981).Google Scholar
  37. [37]
    Krishnamurthy, E.V.: Matrix processors using p-adic arithmetic for exact linear computations. IEEE Transactions on Comp. C26,7, 633–639 (1977).Google Scholar
  38. [38]
    Kulish, U., Miranker, W.L.: Computer airthmetic in theory and practice. New York: Academic Press (1980).Google Scholar
  39. [39]
    Lanam, D.H.: An algebraic front-end for the production and use of numerical programs. Proceedings SYMSAC '81 (P.S. Wang ed.), 223–227. New York: ACM (1981).Google Scholar
  40. [40]
    Levine, M.J.: ASHMEDAI Tutorial. Carnegie Mellon University (1975).Google Scholar
  41. [41]
    Levine, M.J., Roskies, R.: ASHMEDAI and a large algebraic problem. Proceedings SYMSAC '76 (R.D. Jenks, ed.), 359–364. New York: ACM (1976).Google Scholar
  42. [42]
    Levine, M.J., Roskies, R.: ASHMEDAI. Proceedings Saint Maximin (A.Visconti,ed.), 70–79. Marseille (1977).Google Scholar
  43. [43]
    Lewis, R.A.: P-adic number systems for error-free computation. Ph.D.Thesis, University of Tennessee, Knoxville (1979).Google Scholar
  44. [44]
    Marti, J., e.a.: Standard LISP report. SIGSAM Bulletin 14,1, 23–43. New York: ACM (1980).Google Scholar
  45. [44]a
    Griss, M.: Portable Standard LISP, a brief overview, last version 11-01-1982, University of Utah, Operational Note 58.Google Scholar
  46. [45]
    Moenck, R., Carter, J.: Approximate algorithms to derive exact solutions to systems of linear equations. Symbolic and Algebraic Computation (E.W. NG, ed.) Springer LNCS series nr.72, 65–73. Berlin-Heidelberg-New York: Springer (1979).Google Scholar
  47. [46]
    Moses, J.: Algebraic simplification: a guide for the perplexed: Comm. ACM 14, 527–537 (1971).CrossRefGoogle Scholar
  48. [47]
    Moses, J.: MACSYMA-the fifth year. SIGSAM Bulletin 8,3, 105–110. New York: ACM (1981).Google Scholar
  49. [48]
    Moses, J.: Algebraic computation for the masses. SIGSAM Bulletin 15,3, 4–8. New York: ACM (1981).Google Scholar
  50. [49]
    Moore, P.M.A., Norman, A.C.: Implementing a polynomial factorization and ged package. Proceedings SYMSAC '81 (P.S. Wang, ed.), 109–116. New York: ACM (1981).Google Scholar
  51. [50]
    Neaga, M.: PASCAL-SC. Sprachbeschreibung und Programmieranleitung. Univ. Kaiserslautern (1982).Google Scholar
  52. [51]
    Ng, E.W.: Symbolic-numeric interface: a review. Symbolic and Algebraic Computation (E.W. Ng, ed.). Springer LNCS series nr. 72, 330–345. Berlin-Heidelberg-New York: Springer (1979).Google Scholar
  53. [52]
    Ng, E.W., Char, B.: Gradient and Jacobian computation for numerical applications. Proceedings MACSYMA '79 (V.E. Lewis, ed.) M.I.T. (1979).Google Scholar
  54. [53]
    Norman, A.C.: TAYLOR's user's manual. Univ. of Cambridge, Computing Service (1973).Google Scholar
  55. [54]
    Norman, A.C.: Symbolic and algebraic modes in REDUCE. REDUCE-Newsletter 3, 5–9, Univ. of Utah (1978).Google Scholar
  56. [55]
    Norman, A.C., Moore, P.M.A.: The initial design of a vectorbased algebra system. Symbolic and Algebraic Computation (E.W. Ng, ed.), Springer LNCS series nr. 72, 258–265. Berlin-Heidelberg-New York (1979).Google Scholar
  57. [56]
    Olver, F.W.J.: A new approach to error arithmetic. SIAM J. Numer. Anal. 15, 368–393 (1978).CrossRefGoogle Scholar
  58. [57]
    Olver, F.W.J.: Unrestricted algorithms for generating elementary functions. Computing Suppl.2, 131–140 (1980).Google Scholar
  59. [58]
    Pitman, A FORTRAN → LISP translator. Proceedings MACSYMA '79 (V.E. Lewis, ed.), 200–214. M.I.T. (1979).Google Scholar
  60. [59]
    Rall, L.B.: Automatic differentiation: techniques and applications. Springer LNCS series nr. 120. Berlin-Heidelberg-New York: Springer (1981).Google Scholar
  61. [60]
    Rao, T.M.: Finite field computational techniques for exact solution of numerical problems. Ph.D. Thesis Indian Institute of Science, Bangalore (1975).Google Scholar
  62. [61]
    Rich, A., Stoutemyer, D.R.: Capabilities of the muMATH-79 computerion algebra system for the INTEL-8080 microprocessor. Symbolic and Algebraic Computation (E.W. Ng, ed.), Springer (1979).Google Scholar
  63. [62]
    Rochon, A.R., Strubbe, H.: Solution of SIGSAM proble nr. 5 using SCHOONSCHIP, SIGSAM Bulletin 9,4, 30–38. New York: ACM (1975).Google Scholar
  64. [63]
    Sasaki, T.: An arbitrary precision real arithmetic package in REDUCE. Symbolic and Algebraic Computation (E.W. Ng, ed.), Springer LNCS series nr. 72, 358–368. Berlin-Heidelberg-New York: Springer (1979).Google Scholar
  65. [64]
    Smit, J.: New recursive minor expansion algorithms, a presentation in a comparative context. Symbolic and Algebraic Computation (E.W. Ng, ed.), Springer LNCS series nr. 72, 74–87. Berlin-Heidelberg-New York: Springer (1979).Google Scholar
  66. [65]
    Smit, J.: A cancellation free algorithm, with factoring capabilities for the efficient solution of large, sparse sets of equations. Proceedings SYMSAC '81 (P.S. Wang, ed.), pp. 146–154. New York: ACM (1981).Google Scholar
  67. [66]
    Smit, J.: Herrmann, O.E., Jansen, J.H.: Flexible tools to microprogram digital signal processors. Twente Univ. of Technology, preprint (1982).Google Scholar
  68. [67]
    Smit, J., van Hulzen, J.A.: Symbolic-numeric methods in microwave technology. These proceedings.Google Scholar
  69. [68]
    Smit, J., van Hulzen, J.A., Hulshof, B.J.A.: NETFORM and code optimizer manual. SIGSAM Bulletin 15,4. New York: ACM (1981).Google Scholar
  70. [69]
    Steele Jr, G.L.: Fast arithmetic in MACLISP. Proceedings MACSYMA '77, 215–224. NASA-CP 2012 (1977).Google Scholar
  71. [70]
    Stoutemyer, R.D.: Analytic solution of integral equations, using computer algebra. Univ. of Utah: Report UCP-34 (1975).Google Scholar
  72. [71]
    Strubbe, H.: Manual for SCHOONSCHIP. Comp. Phys. Comm. 8, 1–30 (1974).CrossRefGoogle Scholar
  73. [72]
    Stummel, F.: Perturbation theory for evaluation algorithms of arithmetic expressions. Math. of Comp. 37, 435–473 (1981).Google Scholar
  74. [73]
    Tobey, R.G.: Experience with FORMAC algorithm design. Comm. ACM 9, 589–597 (1966).CrossRefGoogle Scholar
  75. [74]
    Tobey, R.G.: Symbolic mathematical computation-introduction and overview. Proceedings SYMSAM 2 (S.R. Petrick, ed.), 1–16. New York: ACM (1971).Google Scholar
  76. [75]
    van Hulzen, J.A.: Computational problems in producing Taylor coefficients for the rotating disk problem. SIGSAM Bulletin 14,2, 36–49. New York: ACM (1980).Google Scholar
  77. [76]
    van Hulzen, J.A.: Breuer's grow factor algorithm in computer algebra. Proceedings SYMSAC '81 (P.S. Wang, ed.), 100–104. New York: ACM (1981).Google Scholar
  78. [77]
    van Hulzen, J.A., Calmet, J.: Computer algebra systems. Computing Suppl. 1982 (to appear).Google Scholar
  79. [78]
    van Hulzen, J.A., Hulshof, B.J.A.: An expression analysis package for REDUCE 2 (in preparation).Google Scholar
  80. [79]
    Watanabe, S.: A technique for solving ordinary differential equations using Rieman's P-functions. Proceedings SYMSAC '81 (P.S. Wang, ed.), 36–43. New York: ACM (1981).Google Scholar
  81. [80]
    Willers, I.M.: A new integration algorithm for ordinary differential equations based on continued fraction approximation. Comm. ACM 17, 504–508 (1974).CrossRefGoogle Scholar
  82. [81]
    Wolff von Gudenberg, J.: Gesamte Arithmetik des PASCAL-SC Rechners. Univ. Karlsruhe (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • J. A. van Hulzen
    • 1
  1. 1.Department of Applied Mathematics and Department of Computer ScienceTwente University of TechnologyEnschedethe Netherlands

Personalised recommendations