On polynomial factorization

  • D. Lazard
4. Algorithms II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 144)


Finite Field Random Integer Primitive Idempotent Orthogonal Idempotent Information Processing Letter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.V. Aho, J. Hopcroft, J.D. Ullman. The design and analysis of computer algorithms. Addison-Wesley (Reading (Mass), 1974)Google Scholar
  2. [2]
    E.R. Berlekamp. Factoring polynomials over Large finite fields. Math. Comp. 24 (1970), p. 713–735.Google Scholar
  3. [3]
    A.B. Borodin, I. Munroe. The computational Complexity of algebraic and numeric problems. American Elsevier (New-York, 1975).Google Scholar
  4. [4]
    J. Calmet, R. Loos. An improvement of Rabin's probabilistic algorithm for generating irreductible polynomials over GF(p). Information Processing Letters, 11, no 2 (1980), p. 94–95.CrossRefGoogle Scholar
  5. [5]
    P. Camion. Un algorithme de construction des idempotents primitifs des idéaux d'algèbres sur \(\mathbb{F}_q\). A paraître dans "Theory and practice of combinatorics (North Holland).Google Scholar
  6. [6]
    P. Camion. Un algorithme de construction des idempotents primitifs des idéaux d'algèbres sur \(\mathbb{F}_q\). C.R. Acad. Sc. Paris 291 (1980), p. 479–482.Google Scholar
  7. [7]
    D.G. Cantor, H. Zassenhaus. On algorithms for factoring polynomials over finite fields. Preprint (Mai 1980).Google Scholar
  8. [8]
    Flajolet, Steyeardt. A branching process arising in dinamic hashing, trie searching and polynomial factorization. Submitted to 9-th ICALP Symp. Aarhus (1982).Google Scholar
  9. [9]
    M. Mignotte. An inequality about factors of polynomials. Math. Comp. 28 (1974), p. 1153–1157.Google Scholar
  10. [10]
    A. Miola, D.Y.Y. Yun. Computational aspects of Hensel-type univariate polynomial greatest common divisor algorithms. Eurosam's 74 — Sigsam Bull. 8 (1974), Issue no 31, p. 46–54.Google Scholar
  11. [11]
    R.T. Moenck. On the efficiency of algorithms for polynomial factoring. Math. Comp. 31 (1977), p. 235–250.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • D. Lazard
    • 1
  1. 1.Mathématiques — InformatiqueUniversité de PoitiersPoitiers Cedex

Personalised recommendations