Unstable flows of concentrated suspensions

  • D. Quemada
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 164)


Shear Rate Flow Curve Disperse System Flow Instability Wall Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BATCHELOR G.K. and GREEN J.T. (1972)-The determination of the bulk stress in a suspension of spherical particles to order C2. J. Fluid. Mech. 56, 401–427.Google Scholar
  2. BRANDT A. and BUGLIARELLO G. (1966)-Concentration redistribution phenomena in the shear flow of monolayers of suspended particles. Trans. Soc. Rheol. 10, 229–251.Google Scholar
  3. CASSON N. (1959)-A flow equation for pigment-oil suspensions of printing ink type. In“Rheology of Disperse Systems”, (ed. Mill C.C. pp 84–102, Pergamon, London.Google Scholar
  4. CHAFFEY C.E. (1977)-Mechanisms and Equations for shear thinning and thickening in dispersions. Colloid & Polymer Sci. 255, 691–698.Google Scholar
  5. CHENG D. CH and RICHMOND R.A. (1978)-Some observations on the rheological behaviour of dense suspensions. Rheol. Acta. 17, 446–453.Google Scholar
  6. CROSS M.M. (1965)-Rheology of non-newtonian fluids: a new flow equation for pseudo-plastic systems. J. Colloid. Sci. 20, 417–437.Google Scholar
  7. EINSTEIN A. (1906)-Ann. Physik, 19, 289–306. For english translation see Einstein A.,“The theory of Brownian movement”,pp.36–54. Dover N.Y. 1956.Google Scholar
  8. GILLESPIE T. (1966)-Application of the hydrodynamic-structural theory of non-newtonian flow to suspensions which exhibit moderate shear thickening with particular reference to “dilatant” vinyl plastisols. J. Colloid. Interface Sc. 22, 554–562.Google Scholar
  9. HOFFMAN R.L. (1972)-Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16, 155–173.Google Scholar
  10. HOFFMAN R.L. (1974)-II. Theory and experimental tests. J. Colloid Interface Sci. 46, 491–506.Google Scholar
  11. JOLY M. (1958)-Changements de structure provoqués par l'écoulement. Rheol. Acta 1, 180–185.Google Scholar
  12. KRIEGER I.M. and DOUGHERTY T.J. (1967)-Some problems in the theory of colloids. In“Surface and Coatings Related to Paper and Wood”. R. Marchessault, C. Skaar ed. Syracuse Univ. Press.Google Scholar
  13. KRIEGER I.M. and DOUGHERTY T.J. (1959)-A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152.Google Scholar
  14. KRIEGER I.M. (1963)-A dimensional approach to colloid rheology. Trans. Soc. Rheol. 7, 101–109.Google Scholar
  15. MIDDLEMAN S. (1968)-The flow of high polymers. Interscience Pub.N.Y.Google Scholar
  16. MOONEY M. (1951)-The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6, 162–170.Google Scholar
  17. METZNER A.B. and WHITLOCK M. (1958)-Flow behavior of concentrated (dilatant) suspensions. Trans. Soc. Rheol. 2, 239–254.Google Scholar
  18. OSTWALD W., AUERBACH R. (1926)-Über die viscosität kolloider lösungen im struktur, laminar-und turbilenzgebiet. Kolloid Z. 38, 261–280.Google Scholar
  19. QUEMADA D. (1977)-Rheology of concentrated disperse system and minimum energy dissipation principle. I. Viscosity-concentration relationship. Rheol. Acta 16, 82–94.Google Scholar
  20. QUEMADA D. (1978a)-II. A model for non-newtonian shear viscosity in steady flows. Rheol. Acta 17, 632–642.Google Scholar
  21. QUEMADA D. (1978b)-III. General features of the proposed non-newtonian model. Comparison with experimental data. Rheol Acta 17, 643–653.Google Scholar
  22. QUEMADA D. (1982)-Blood rheology and its implication in blood flow. In “Arteries and Arterial Blood Flow (Biomechanical and Physiological Aspects)”. pp 3–129-1980 CISME Summer School (Udine, Italy)-Springer-Verlag, Berlin (In press).Google Scholar
  23. REE T. and EYRING H. (1955)-Theory of non-newtonian flow. I. Solid Plastic system. J. Appl. Phys. 26, 793–804.Google Scholar
  24. SACKS A.H. and TICKNER E.G. (1966)-Laminar flow regimes for rigid-spheres suspensions. In “Hemorheology”, pp 277–303. A.L. Copley (ed) Pergamon Press, Oxford, 1968.Google Scholar
  25. SESHADRI V. and SUTERA S.P. (1970)-Apparent viscosity of coarse-concontrated suspensions in tube flow. Trans. Soc. Rheol. 14, 351–373.Google Scholar
  26. StRIVENS T.A. (1976)-The shear thickening effect in concentrated dispersion systems. J. Colloid. Interface Sci. 57, 476–487.Google Scholar
  27. TORDELLA J.P. (1969)-Unstable flow molten polymers. In “Rheology Theory and Applications”: Vol V. Eirich F.R. (ed) Acad. Press. N.Y.Google Scholar
  28. VINOGRADOV G.V. and Malkin A.Y. (1966)-Comparative description of the peculiarities of deformation of polymer and plastic disperse systems. Rheol. Acta. 5, 188–193.Google Scholar
  29. WEILL A. (1980)-About the origin of sharkskin. Rheol. Acta. 19, 623–632.Google Scholar
  30. WELTMANN R.N. (1960)-Rheology of pastes and paints. In “Rheology Theory and Applications” pp 189–248. Eirich F.R. (ed). Acad. Press. N.Y.Google Scholar
  31. WILLIAMSON R.V. (1929)-The flow of pseudoplastic materials. Ind. Eng. Chem. 21, 1108–1111.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • D. Quemada
    • 1
  1. 1.Laboratoire de Biorhéologie et d'Hydrodynamique Physico-chimiqueUniversité Paris 7ParisFrance

Personalised recommendations