Advertisement

Experimental aspects of the transition to turbulence in Rayleigh-Bénard convection

  • M. Dubois
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 164)

Abstract

In a small box (aspect ratio = 2), a high Prandtl number fluid submitted to Rayleigh-Bénard convection undergoes a cascade of different spatial order, i.e. presents different stable structures when the Rayleigh number is increased. Inside each structure, we observe an evolution of the temporal order, from generally a stationary to a turbulent state, through a small number of bifurcations. Some experimental examples illustrate the properties of these temporal states, in particular Poincaré sections have been drawn in the phase space and have provided new dynamical information.

Keywords

Phase Space Rayleigh Number Fourier Spectrum Temperature Perturbation Spatial Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    P. Bergé, in “Chaos and Order in Nature” Schloss Elmau 1981 ed. by H. Haken (Springer-Verlag) p.14.Google Scholar
  2. [2]
    P. Bergé, M. Dubois “Scattering techniques applied to supramolecular and nonequilibrium systems” ed. by S.H. Chen, B. Chu-Plenum Press 1981.Google Scholar
  3. [3]
    P. Bergé, M. Dubois, J. Phys. Lettres 40, L.505, (1979).Google Scholar
  4. [4]
    E.L. Koschmieder, S.G. Pallas, Int. J. Heat Mass Transfer 17, 991 (1974).Google Scholar
  5. [5]
    F.H. Busse and J.A. Whitehead, J. Fluid Mech. 47, 305 (1971).Google Scholar
  6. [6]
    P. Bergé, M. Dubois, P. Manneville, Y. Pomeau, J. Phys. Lettres 41, L341, (1980).Google Scholar
  7. [7]
    M. Dubois in “Symmetries and Broken Symmetries in condensed matter Physics” edited by N. Boccara (IDSET Paris) 1981.Google Scholar
  8. [8]
    M. Dubois and P. Bergé, J. de Phys. 42, 167 (1981).Google Scholar
  9. [9]
    M. Dubois, P. Bergé, V. Croquette, Comptes Rendus Acad? Sci. to be published.Google Scholar
  10. [10]
    M.I. Rabinovich, Sov. Phys. Usp. 21 (5), 443 (1978).Google Scholar
  11. [11]
    B.A. Huberman and J.P. Crutchfield, Phys. Rev. Letters 43, 1743 (1979).Google Scholar
  12. [12]
    J. Maurer and A. Libchaber J. de Phys. Lettres 40, L419 (1979).Google Scholar
  13. [13]
    J.P. Gollub and S.V. Benson, J. Fluid Mech. 100, 4119 (1980).Google Scholar
  14. [14]
    M. Giglio, S. Musazzi and U. Perini, to be published.Google Scholar
  15. [15]
    J.B. Mc Laughin, J. of Stat. Physics 24, 375 (1981).Google Scholar
  16. [16]
    M.J. Feigenbaum, Phys. Letters 74A, 375 (1979).Google Scholar
  17. [17]
    J.C. Roux, A. Rossi, S. Bachelart and C. Vidal, Physics Letters 77A, 391 (1980).Google Scholar
  18. [18]
    B. Malraison, P. Atten, Comptes Rendus Acad. Sci. 292, 267 (1981).Google Scholar
  19. [19]
    V. Croquette, C. Poitou, Comptes Rendus Acad. Sci. 292, 1353 (1981).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Dubois
    • 1
  1. 1.Service de Physique du Sol ide et de Résonance Magnétique CEN-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations