Mathematical methods in stability theory

  • G. Lebon
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 164)


Variational Principle Rayleigh Number Linear Theory Trial Function Bifurcation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    O. Reynolds, Phil. Trans. Roy. Soc. A186,123 (1895).Google Scholar
  2. (2).
    W. Orr, Proc. Roy. Irish Acad., A27, 69 (1907).Google Scholar
  3. (3).
    J. Serrin, Arch. Rat. Mech. Anal., 3, 1 (1959).Google Scholar
  4. (4).
    D.D. Joseph, Stability of Fluid Motions, Springer, Berlin, (1976).Google Scholar
  5. (5).
    A. Lindsted, Mém. Acad., St-Petersbourg, (1882).Google Scholar
  6. (6).
    H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, 1892, Dover, New York, (1957).Google Scholar
  7. (7).
    L. Landau and E. Lifschitz, Fluid Mechanics, Pergamon, New York, (1959).Google Scholar
  8. (8).
    E. Hopf, Comm. Pure Appl. Math., 1, 303 (1948).Google Scholar
  9. (9).
    L. Gorkov, J.E.T.P., 6, 311 (1958).Google Scholar
  10. (10).
    W. Malkus and G. Veronis, J. Fluid Mech., 4, 225 (1957).Google Scholar
  11. (11).
    J.T. Stuart, J. Fluid Mech., 4, 1 (1958).Google Scholar
  12. (12).
    E. Hopf, Bericht. Math. Phys. Akad. Wiss. Leipzig, XCIV, 1 (1942).Google Scholar
  13. (13).
    D.H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, vol. 309, Springer, Berlin, (1973).Google Scholar
  14. (14).
    G. Iooss and D.D. Joseph, Elementary Stability and Bifurcations Theory, Springer Berlin, (1980).Google Scholar
  15. (15).
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, (1961).Google Scholar
  16. (16).
    M. Lyapounov, Comm. Soc. Math. Kharkov (1893), Stability.of Motion (English Translation), Acad. Press., New York, (1966).Google Scholar
  17. (17).
    A. Movchan, Prikl. Mat. Mekh., 23, 483, (1959).Google Scholar
  18. (18).
    V.I. Zubov, Methods of Lyapounov and their applications, P. Noordhoff, Groningen, (1964).Google Scholar
  19. (19).
    W. Koiter, Purpose and Achievements of Research in Elastic Stability, Report n° 363, Lab. of Eng. Mech., Delft, (1968).Google Scholar
  20. (20).
    A. Pritchard, J. Math. Anal., 4, 78 (1968).Google Scholar
  21. (21).
    H. Jeffreys, Phil. Mag., 2, 833 (1926).Google Scholar
  22. (22).
    L. Segel, in Non-Equilibrium Thermodynamics, Variational Techniques and Stability, p. 165, Univ. Chicago Press, Chicago, (1966).Google Scholar
  23. (23).
    B. Finlayson, The Method of Weighted Residuals and Variational Principle, Acad. Press, New York, (1972).Google Scholar
  24. (24).
    E. Palm, Ann. Rev. Fluid Mechanics, 7, 30 (1975).Google Scholar
  25. (25).
    C. Normand, Y. Pomeau and M. Velarde, Rev. Modern Phys., 49, 581 (1977).Google Scholar
  26. (26).
    F. Busse, Report Progr. in Phys., 12, 1929 (1978).Google Scholar
  27. (27).
    J.R. Pearson, J. Fluid Mech., 4, 489 (1958).Google Scholar
  28. (28).
    D.D. Joseph, Arch. Rat. Mech. Anal., 20, 59 (1965).Google Scholar
  29. (29).
    P. Glansdorff and I. Prigogine, Structure, Stabilité et Fluctuations, Masson, Paris, (1971).Google Scholar
  30. (30).
    A. Schlater, D. Lortz and F. Busse, J. Fluid Mech., 23, 129 (1965).Google Scholar
  31. (31).
    L. Landau, C. R. Acad. Sc. URSS, 44, 311 (1944).Google Scholar
  32. (32).
    I. Stakgold, Soc. Ind. Appl. Math. Rev., 13, 289 (1971).Google Scholar
  33. (33).
    J. Keller and S. Antman, eds, Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin, New York, (1969).Google Scholar
  34. (34).
    H. Haken, ed., Synergetics, a Workshop, Springer, Berlin, (1977).Google Scholar
  35. (35).
    H. Swinney and J.P. Gollub, eds, Hydrodynamic Instabilities and Transition to Turbulence, Springer, Berlin, (1981).Google Scholar
  36. (36).
    C. Bardos and D. Bessis, eds, Bifurcation Phenomena in Mathematical Physics and Related Topics, Nato Advanced Study Institute Series, Reidl, Dordrecht, (1980).Google Scholar
  37. (37).
    M. Vainberg, Variational Methods for the Study of Non-linear Operators, HoldenDay, San Francisco, (1964).Google Scholar
  38. (38).
    G. Lebon and G. Perez-Garcia; Bull. Cl. Sciences Acad. Roy., Belgique, 66, 520 (1980).Google Scholar
  39. (39).
    M. Biot, Variational Principles in Heat Transfer, Oxford Math. Mono., Oxford, (1970).Google Scholar
  40. (40).
    G. Lebon and J. Lambermont, J. Chem. Phys., 59, 2929 (1973).Google Scholar
  41. (41).
    G. Lebon, Variattional Principles in Thermomechanics, in C.I.S.M. Courses and Lectures Notes n° 262, Springer, Wien, (1980).Google Scholar
  42. (42).
    D. Nield, J. Fluid Mech., 19, 341 (1964).Google Scholar
  43. (43).
    S.H. Davis, J. Fluid Mech., 39, 347 (1969).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Lebon
    • 1
  1. 1.Department of MechanicsLiège UniversityLiègeBelgium

Personalised recommendations