Singular lagrangian formalism in particle dynamics, I

  • G. Longhi
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 162)


Configuration Space Lagrangian Approach Class Constraint Finsler Space Primary Constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    H. Rund, “The Hamilton-Jacobi Theory in the Calculus of Variations”, Van Nostrand 1966; idem. “Tensors, Differential Forms, and Variational principles”, J. Wiley and Sons, New York, 1975.Google Scholar
  2. 2).
    P.A.M. Dirac, Proc. Camb. Phil. Soc., 29,389 (1933).Google Scholar
  3. 3).
    R. Casalbuoni, J. Gomis and G. Longhi, Nuovo Cimento, 24A,249 (1974).Google Scholar
  4. 4).
    For the generalization on the relativistic spin particle seeGoogle Scholar
  5. 4a).
    A. Barducci, R. Casalbuoni and L. Lusanna, Nuovo Cimento 35A,377 (1976); Phys. Lett. 64B,319(1976).Google Scholar
  6. 4b).
    L. Lusanna, “Recent Developements in Classical Relativistic Mechanics with Constraints”, Genève Univ. Preprint, UGVA-DPT 1981/ 05-298, and references quoted therein.Google Scholar
  7. 5).
    P.A.M. Dirac, Canad. J. Math. 2,129 (1950); and 3,1(1951); Proc. Roy. Soc. London A246,326(1758); “Lectures on Quantum Mechanics”, Belfer Graduate School, Yeshiva Univ., 1964.Google Scholar
  8. 6).
    K. Kamimura and T. Shimizu, Prog. Theor. Phys. 58,383 (1977).Google Scholar
  9. 7).
    D. Dominici, J.Gomis and G. Longhi, Nuovo Cimento 48B,152 (1978); 48A,257(1978); 56A,263(1980).Google Scholar
  10. 8).
    S. Shanmugadhasan, J. Math. Phys. 14,677 (1973).CrossRefGoogle Scholar
  11. 9).
    E.C.G. Sudarshan and N. Mukunda, “Classical Dynamics: a Modern Perspective”, J. Wiley and S., New York, 1974.Google Scholar
  12. 10).
    Ph. Droz-Vincent, Lett. Nuovo Cimento 1,839 (1969); and206(1973); Phys. Scripts 2,129(1970); Re. Math. Phys. 8,9(1975); Ann. Inst. H. Poincaré 27,407(1977); Phys. Rev. DI9,702(1970.Google Scholar
  13. 11).
    I.T. Todorov, “Dynamics of Relativistic point Particles as a problem with constraints”, Comm. of the JINR, EZ-10125 Dubna(1976); “Constraint Hamiltonian Dynamics of Directly Interacting Relativistic Point Particles”, Lectures at the Summer School in Math. Phys. Bogazici Univ., Bebek, Instanbul, 1979, and at the 17th. Winter School of Theor. Phys., Karpacz 1980; “Constraint Hamiltonian Approach to Relativistic Point Particles Dynamics”, Lectures at the ICTP Trieste, 1980.Google Scholar
  14. 12).
    A. Komar, Phys. Rev. D18,1881,1887 and 3017(1978); D19,2908(1979).Google Scholar
  15. 13).
    V.V. Molotkov and I.T. Todorov, Comm. Math. Phys. 79,11 (1981).CrossRefGoogle Scholar
  16. 14).
    A. Kihlberg, R. Marnelius and N. Mukunda, Phys. Rev. D23,2201 (1981).Google Scholar
  17. 14a).
    N. Mukunda and E.C.G. Sudarshan, Phys. Rev. D23,2210 (1981).Google Scholar
  18. 14b).
    E.C.G. Sudarshan, N. Mukunda and J.N. Goldberg, Phys. Rev. D23, 2218 (1981).Google Scholar
  19. 14c).
    J.N. Goldberg, E.C.G. Sudarshan and N. Mukunda, Phys. Rev. D23, 2231 (1981).Google Scholar
  20. 14d).
    L. Lusanna, “Gauge-fixings, Evolution Generators and World-line Conditions in Relativistic Classical Mechanics with Constraints”, Gèneve Univ. preprint, UGVA-DPT 1981/04-289.Google Scholar
  21. 15).
    Ph. Droz-Vincent, Ann. Inst. H. Poincaré 27,407 (1977).Google Scholar
  22. 16).
    S. Weinberg, Phys. Rev. 133, B 1318 (1964).Google Scholar
  23. 17).
    L. Bel, “Mechanica Relativistica Predictiva“, curso Dep. Fis. Teor. Barcelona Univ. UAB FT-34, 1977; Ann. Inst. H. Poincaré 14,18(1971).Google Scholar
  24. 17a).
    L. Bel and J. Martin, Ann. Inst. H. Poincaré 22,173 (1975); 33,409 (1980).Google Scholar
  25. 17b).
    L. Bel and F.X. Fustero, Ann. Inst. H. Poincaré 25,411 (1976).Google Scholar
  26. 18).
    M. Kalb and P. Van Alstine, “Invariant Singular Action for the Relativistic Two-Body Problem: a Hamiltonian Formulation” Yale report C00-3075-146, 1976.Google Scholar
  27. 19).
    T. Takabayasi, Prog. Theor. Phys. 57,331 (1977).Google Scholar
  28. 20).
    J. Gomis, J.A. Lobo and J.M. Pons, “A singular Lagrangian Model for two Interacting Relativistic Particles”, Ann. Inst. H. Poincarè XXXV, 17(1981).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Longhi
    • 1
    • 2
  1. 1.Istituto di Fisica Teorica dell'UniversitàFirenze
  2. 2.Istituto Nazionale di Fisica NucleareSezione di Firenze

Personalised recommendations