Forms of relativistic quantum dynamics

Particles vs. fields
  • F. Coester
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 162)


Commutation Relation Wave Operator Relativistic Invariance Mass Operator Particle Creation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    D.G. Currie, T.F. Jordan and E.C.G. Sudarshan, Rev.Mod. Phys. 35 350 (1963).CrossRefGoogle Scholar
  2. 1a).
    D.G. Currie, J. Math. Phys. 4,1470 (1963).CrossRefGoogle Scholar
  3. 1b).
    J.T. Cannon and H. Leutwyler, Nuovo Cimento 37,551 (1965).Google Scholar
  4. 2).
    L.L. Foldy, Phys. Rev. 122,275 (1961).CrossRefGoogle Scholar
  5. 3).
    R. Jost, “The General Theory of Quantized Fields” (Amer. Math. Society, Providence, R.I., 1965).Google Scholar
  6. 4).
    R.F. Streator and A.S. Wightman, “PCT, Spin and Statistics and All That”, (Benjamin, N.Y. 1964).Google Scholar
  7. 5).
    Mathematical rigor can be found in refs. 3 and 4.Google Scholar
  8. 6).
    See ref. 3, p. 120.Google Scholar
  9. 7).
    F. Coaster, Helv. Phys. Acta 38,7 (1965).Google Scholar
  10. 7a).
    M. Reed and B. Simon, “Methods of Modern Mathematical Physics” (Academic Press, New York 1979) Vol. III, p. 321.Google Scholar
  11. 8).
    D. Ruelle, Helv. Phys. Acta 35,147 (1962).Google Scholar
  12. 9).
    P.A.M. Dirac, Rev. Mod. Phys. 21,392 (1949).CrossRefGoogle Scholar
  13. 10).
    J. Schwinger, Phys. Rev. 12,324 (1962).CrossRefGoogle Scholar
  14. 11).
    M.H.L. Pryce, Proc. Roy. Soc. A195,62 (1949), definition (e).Google Scholar
  15. 11a).
    T.D. Newton and E.P. Wigner, Rev. Mod. Phys. 21,400 (1949).CrossRefGoogle Scholar
  16. 12).
    B. Bakamjian and L.N. Thomas, Phys. Rev. 92,1300 (1953).CrossRefGoogle Scholar
  17. 13).
    W. Polyzou and F. Coester, to be submitted to Phys. Rev. D.Google Scholar
  18. 14).
    B. Bakamjian, Phys. Rev. 121,1849 (1961).CrossRefGoogle Scholar
  19. 15).
    S.N. Sokolov, Teor. Mat. Fiz. 24,236 (1975).Google Scholar
  20. 16).
    R. Fong and J. Sucher, J. Math. Phys. 2,1956 (1964).Google Scholar
  21. 17).
    For a proof see T. Kato, “Perturbation Theory for Linear Operators”(Springer, New York 1966). Theorem 3.7, p. 533.Google Scholar
  22. 18).
    See for instance M. Reed and B. Simon “Methods of Modern Mathematical Physics” (Academic Press, New York 1979) Vol. I, Theorem I.11.Google Scholar
  23. 19).
    C. Chandler and A.G. Gibson, Indiana University Mathematics Journal 25,443 (1976). See Theorem 3 and Remark 8 on p. 454.CrossRefGoogle Scholar
  24. 20).
    U. Mutze, J. Math. Phys. 19,231 (1978).CrossRefGoogle Scholar
  25. 21).
    The main ideas are due to S.N. Sokolov, Dokl. Akad. Nank SSSR. 233,575 (1977).Google Scholar
  26. 22).
    B. de Dormale, J. Math. Phys. 20,1229 (1979).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • F. Coester
    • 1
  1. 1.Argonne National LaboratoryArgonne

Personalised recommendations