Skip to main content

Spontaneous predictivisation

  • Conference paper
  • First Online:
Relativistic Action at a Distance: Classical and Quantum Aspects

Part of the book series: Lecture Notes in Physics ((LNP,volume 162))

Abstract

In the first section of this paper we define the concept of an Attractor of a hereditary first order differential equation as an ordinary differential equation whose solutions are solutions of the hereditary one and can be interpreted as the asymptotes of its generic solutions. We define also the concept of Predictive Differential Equations associated with a class of hereditary ones depending on a coupling constant G as a first order differential equation which is such that all its solutions are solutions of the corresponding hereditary one and which is analytic in the neighbourhood of G = 0. We report some numerical work proving that for some hereditary equations the corresponding predictive ones are Attractors.

In the second section we consider the retarded electromagnetic equations of two point charges and we prove numerically in a particular case that the associate Predictive Poincaré Invariant System defined in previous papers is an Attractor in an obviously generalized sense. Roughly speaking this means that the retarded electromagnetic equations of motion have a built-in mechanism which causes a spontaneous predictivisation of the causal interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bellman and K.L. Cooke. Differential-Difference Equations. Academic Press, 1963

    Google Scholar 

  2. L.E. El'sgol'ts and S.B. Norkin. Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Academic Press, 1973.

    Google Scholar 

  3. R.D. Driver. Ordinary and Delay Differential Equations. Springer-Verlag, 1977.

    Google Scholar 

  4. L. Landau and E. Lifshitz. The Classical Theory of Fields. Addison-Wesley Press, 1951.

    Google Scholar 

  5. E. Kerner. Journal of Mathematical Physics 6,1218 (1965).

    Article  Google Scholar 

  6. J.L. Sanz. Tesis Universided Autónoma de Madrid (1976).

    Google Scholar 

  7. J.L. Sanz. Journal of Math. Physics 20,2334 (1979).

    Article  Google Scholar 

  8. L. Bel and X. Fustero. Annales de l'Intitut H. Poincaré 25,411 (1976).

    Google Scholar 

  9. M. Portilla. Journal of Physics A, 12,1075 (1979).

    Google Scholar 

  10. L. Bel, Th. Damour, N. Deruelle, J. Ibañez and J. Martin. To be published in General Relativity and Gravitation.

    Google Scholar 

  11. D.G. Currie. Physical Review, 142,817 (1966).

    Article  Google Scholar 

  12. R.N. Hill. Journal of Mathematical Physics 8,201 (1967).

    Article  Google Scholar 

  13. L. Bel. Annales de l'Institut H. Poincaré, 12,307 (1970).

    Google Scholar 

  14. L. Bel. Lecciones de Mecánica Relativista Predictive. Universidad Autónoma de Barcelona (1976).

    Google Scholar 

  15. L. Bel and J. Martin. Annales de l'Institut H. Poincaré, 33,409 (1980).

    Google Scholar 

  16. Droz-Vincent. Physica Scripta 2,129 (1970).

    Google Scholar 

  17. H.P. Kunzle. Journal of Mathematical Physics 15,1033 (1974).

    Article  Google Scholar 

  18. A. Salas and J.M. Sánchez-Rón. Il Nuovo Cimento 20B,209 (1974).

    Google Scholar 

  19. L. Bel. Journées Relativistes de Toulouse, Université de Toulouse (1974).

    Google Scholar 

  20. R. Lapiedra and A. Molina. Journal of Mathematical Physics 20,1308 (1979).

    Article  Google Scholar 

  21. J.C. Kasher and S.L. Schwebel. Physical Review D4,2956 (1971)

    Google Scholar 

  22. C.M. Andersen and Hans C. von Bayer. Physical Review D5,2470 (1972).

    Google Scholar 

  23. J. Huschilt, W.E. Baylis, D. Leiter and G. Szamosi. Physical Review D7,2844 (1973).

    Google Scholar 

  24. J. Huschilt and W.E. Baylis. Physical Review D13,3256 (1976).

    Google Scholar 

  25. W.E. Baylis and J. Huschilt. Physical Review D13,3262 (1976).

    Google Scholar 

  26. In the meantime between the workshop and the publication of these proceedings, that conjecture has been proved.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Llosa

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Bel, L. (1982). Spontaneous predictivisation. In: Llosa, J. (eds) Relativistic Action at a Distance: Classical and Quantum Aspects. Lecture Notes in Physics, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-11573-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-11573-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11573-1

  • Online ISBN: 978-3-540-39299-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics