Constraint Hamiltonian mechanics of directly interacting relativistic particles

  • I. T. Todorov
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 162)


Poisson Bracket Wave Operator Mass Shell World Line Evolution Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A1).
    L. Alexandrov, M. Drenska, D. Karadjov, P. Morozov, The inverse relativistic problem for quark-antiquark bound states, INRNE preprint, Sofia (1981).Google Scholar
  2. A2).
    R. Arens, J. Math. Phys. 7,1341 (1966), ibid. 12,2415(1971), ibid. 16,1191(1975); Commun. Math. Phys. 21,125 and 139(1971); Archive Rat. Mech. Analy. 47,255(1977).CrossRefGoogle Scholar
  3. B1).
    D.D. Bakalov, Zh. Eksp. Teor. Fiz. 79,1149 (1980).Google Scholar
  4. B1a).
    D.D. Bakalov, S.I. Vinizky, Spin effects in the three body problem with electromagnetic interaction, JINR preprint P4-12736, Dubna (1979).Google Scholar
  5. B2).
    A.O. Barut, J. Kraus, J. Math. Phys. 1,506 (1976); see alsoCrossRefGoogle Scholar
  6. B2a).
    A.O. Barut, J. Math. Phys. 21,568 (1980.CrossRefGoogle Scholar
  7. B3).
    L. Bel, Ann. Inst. H. Poincaré 18A,57 (1973); Phys. Rev. D18,4780(198); Quantum Mechanics of predictive Poincaré invariant systems, in: Contribution to Differential Geometry and Relativity, M. Cohere, M, Flato, eds. (D. Reidel Publ. Dordrech-Holland, 1976) p.p. 197–214 and Inst. H. Poincaré preprint (see also lectures in these Proceedings).Google Scholar
  8. B4).
    L. Bel, X. Fustero, Ann. Inst. H. Poincaré 25A,411 (1976).Google Scholar
  9. B5).
    L. Bel, J. Martin, Phys. Rev. D8,4347 (1973), ibid. D9,2760(1974); Ann. Inst. H. Poincaré 22A,173(1975).Google Scholar
  10. B6).
    S.I. Bidikov, I.T. Todorov, Relativistic addition of interactions in constraint Hamiltonian mechanics (submitted to Lett.Math.Phys. 5,461 (1981).Google Scholar
  11. C1).
    F. Coester, Helv. Phys. Acta 37,7 (1965); Lecture Notes in Physics 130 (Springer, Berlin, 198) p.p. 190-196 see also lectures in these Proceedings).Google Scholar
  12. C2).
    H.W. Crater, Phys. Rev. D18,2872 (1978).Google Scholar
  13. C3).
    H.W. Crater, Phys. Rev. D16,1580 (1977)Google Scholar
  14. C3a).
    H.W. Crater, P. Van Alst né, Relativistic quark potential for the vector mesons, Tennessee preprint (1980) (see also lectures in these Proceedings).Google Scholar
  15. C4).
    D.G. Currie, T.F. Jordan, C.E.G. Sudarshan, Rev. Mod. Phys. 35,350 (1963), ibid. 1032; see also D.G. Curie, T.F. Jordan, in: Lectures in Theoretical Physics, A.O. Barut, W.E. Brittin (eds) vol. XA (Gordon an Breach, N.Y. 1968) pp. 91–139.CrossRefGoogle Scholar
  16. D1).
    P.A.M. Dirac, Commun. Dublin Inst. Adv. Studies ser. A no. 1 (1943) and no. 3 (1946).Google Scholar
  17. D3).
    P.A.M. Dirac, Canad. J. Math. 2,129 (1950); Proc. Roy. Soc. A246,326(1958); Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva Univ., N. Y. 1964.Google Scholar
  18. D2).
    P.A.M. Dirac, Rev. Mod. Phys. 17,195 (1945), ibid. 21,392(1949).CrossRefGoogle Scholar
  19. D4).
    D. Dominici, J. Gomis, G. Longhi, Nuovo Cim. 48A,257 (1978), ibid. 48B,152(1978), ibid. 56A,263(1980) (see also Professor Longhi' s lectures in these Proceedings).Google Scholar
  20. D5).
    Ph. Droz-Vincent, Ann. Inst. H. Poincaré 27,407 (1977), ibid. 32A,377(1980) and further references quoted there (see also lectures in these Proceedings).Google Scholar
  21. E1).
    A. Eddington, Relativity Theory of Protons and Electrons (University Press, Cambrige, 1936)-see, in particular, p. 110.Google Scholar
  22. F1).
    L.D. Faddeev, Teor. Mat. Fiz. 1,3 (1969) (English transl.: Theor. Math.Phys. 1,1 (1970) ).Google Scholar
  23. F2).
    R. Faustov, Ann. of Phys. 78,176 (1973).CrossRefGoogle Scholar
  24. F3).
    L.L. Foldy, Phys. Rev. 122,275 (1961), ibid. D15,3044(1977).CrossRefGoogle Scholar
  25. F3a).
    L.L. Foldy, R.A. Krajcik, Phys. Rev. Letters 32,1025 (1974); Phys. Rev. D12,1700(1975).Google Scholar
  26. F4).
    C. Fronsdal, Phys. Rev. D4,1686 (1971).Google Scholar
  27. F5).
    F.X. Fustero, R. Lapiedra, Phys. Rev. D17,2821 (1978).Google Scholar
  28. G1).
    R. Giachetti, E. Sorace, Nuovo Cim. 43A,281 (1978), ibid. 56B,263(1980); Lett. Nuovo Cim. 26,1(1979).Google Scholar
  29. G2).
    J.N. Goldberg, E.C.G. Sudarshan, N. Mukunda, Phys. Rev. D23,2231 (1981).Google Scholar
  30. G3).
    J. Gomis, J.A. Lobo, J.M. Pons, A singular Lagrangian model for two interacting relativistic particles; A model for N-body relativistic interactions, Barcelona Univ. Preprints (1980).Google Scholar
  31. H1).
    A.J. Hanson, T. Regge, C. Teitelboim, Constraint Hamiltonian Systems (Academia Nazionale dei Lincei, Roma, 1976).Google Scholar
  32. H2).
    P. Havas, Acta Phys. Austr. 3,342 (1949); Bull. Am. Phys. Soc. 1,337(1956).Google Scholar
  33. H3).
    R.N. Hill, J. Math. Phys. 8,201 and 1756 (1967) (see also lectures in these Proceedings).Google Scholar
  34. H4).
    L.P. Horwitz, F. Rohrlich, Constraint relativistic quantum dynamics, Syracuse Univ. preprint (1981).Google Scholar
  35. H5).
    W. Hunziker, Commun. Math. Phys. 8,282 (1968).Google Scholar
  36. K1).
    E.H. Kerner (editor) The Theory of Action at a Distance in Relativistic Particle Dynamics. A reprint collection (New York, N.Y., 1972)Google Scholar
  37. K2).
    A. Komar, Phys. Rev. D18,1881,1887 and 3617 (1978); ibid. D19,2908(1979).Google Scholar
  38. L1).
    R. Lapiedra, A. Molina, J. Math. Phys. 20,1308 (1979).Google Scholar
  39. L2).
    R. Lapiedra, F. Marqués, A. Molina, J. Math. Phys. 20,1316 (1979).Google Scholar
  40. L3).
    H. Leutwyler, Nuovo Cim. 37,556 (1965).Google Scholar
  41. L4).
    H. Leutwyler, J. Stern. Ann. of Phys. 112,94 (1978); Nucl. Phys. B157,327(1979).Google Scholar
  42. L5).
    J.A. Llosa, F. Marqués, A. Molina, Ann. Inst. H. Poincaré 32A,303 (1980).Google Scholar
  43. L6).
    A.A. Logunov, A.N. Tavkhelidze, Nuovo Cim. 29,380 (1963).Google Scholar
  44. L7).
    A.A. Logunov, A.N. Tavkhelidze, I.T. Todorov, O.A. Khrustalev, Nuovo Cim. 30,134 (1963).Google Scholar
  45. L8).
    L. Lusanna, Gauge-fixings, evolution generators and world line conditions in relativistic classical mechanics with constraints, Université Genève preprint UGVA-DPT 1981/04-289 (see also lecture in these Proceedings).Google Scholar
  46. M1).
    A. Maheshwari, E.R. Nissimov, I.T. Todorov, Classical and quantum two-body problem in general relativity, preprint IC/80/124, Trieste (1980) and Lett. Math. Phys. 5,359(1981).Google Scholar
  47. M2).
    R.A. Mann, The Classical Dynamics of Particles — Galilean and Lorentz, Relativity (Academic Press, N.Y., 1974) — see, in particular, Chapter 5.Google Scholar
  48. M3).
    V.V. Molotkov, I.T. Todorov, Int. Rep. IC/79/59, Trieste and Commun. Math. Phys. 79,111–132 (1981).Google Scholar
  49. M4).
    U. Mutze, J. Math. Phys. 19,231 (1978).CrossRefGoogle Scholar
  50. N1).
    P.A. Nikolov, I. T. Todoro, Space-time versus phase space approach to relativistic particle dynamics, Proceedings of the 1980 School on Mathematical Problems in Quantum Field Theory, Lecture Notes in Mathematics (Springer, Berlin, to be published.Google Scholar
  51. P1).
    M. Pauri, Canonical (possibly Lagrangian) realization of the Poincaré group with increasing mass-spin trajectories (to be published) in the Proceedings-of the “IX International Colloquium on Group-Theoretical Methods in Physics”, Cocoyoc Mor., Mexico, June, 1980).Google Scholar
  52. P2).
    M. Pauri, G.M. Prosperi, J. Math. Phys. 16,1503 (1975) and 17,1468(1976).Google Scholar
  53. P3).
    V.M. Penafieln, S. Ornstein, K. Rafanelli, Canonical formalism for N interacting relativistic particles, Queens College of the City University of New York preprint, Flushing (1981).Google Scholar
  54. P4).
    H. Primakoff, T. Holstein, Phys. Rev. 55,1218 (1939).CrossRefGoogle Scholar
  55. P5).
    M.H. Pryce, Proc. Roy. Soc. A195,62 (1948).Google Scholar
  56. R1).
    M. Reed, B. Simon, Methods of Modern Mathematical Physics, II: Fourier Analysis Self-Adjointness (Academic Press, N.Y., 1975)-see, in particular, See. X.14.Google Scholar
  57. R2).
    J.L. Richardson, Phys. Letters, 82B,272 (1979).Google Scholar
  58. R3).
    V.A. Rizov, I. T. Todorov, Elem. Chast. i Atom. Yad. 6,669 (1975) (English transl.: Sov. J. Part. Nucl. 6,269(1975) ).Google Scholar
  59. R4).
    V.A. Rizov, I.T. Todorov, B.L. Aneva, Nucl. Phys. B98,447 (1975).Google Scholar
  60. R5).
    F. Rohrlich, Ann. of Phys. 117,292 (1979).Google Scholar
  61. R6).
    F. Rohrlich, Many body forces and the cluster decomposition, Syracuse Univ. preprint (1980); Evolution and covariance in constraint dynamics, SLAC-PUB-2737, Stanford (1981) (see also lectures in these Proceedings).Google Scholar
  62. S1).
    A. Salas, J.M. Sánchez-Ron, Fokker-like dynamics with three-body correlations preprint UAB-FT-57; Barcelona (1980).Google Scholar
  63. S2).
    H. Sazdjian, Nucl. Phys. B161,469 (1979).CrossRefGoogle Scholar
  64. S3).
    H. Sazdjian, Relativistic and separable classical Hamiltonian particle dynamics, Orsay preprint IPNO/TH 81-4 (1981) (see also lecture in these Proceedings); LMP 5,319(1981).Google Scholar
  65. S4).
    S.N. Sokolov, Teor. Mat. Fiz. 36,193 (1978), (English transl.: Theor. Math. Phys. 36,682(1979) ).Google Scholar
  66. S5).
    S.N. Sokolov, Nuovo Cim. 52A,1 (1979).Google Scholar
  67. S6).
    S.N. Sokolov, A.N. Shatny, Teor. Mat. Fiz. 37,291 (1978) (English transl.: Theor. Math. Phys. 37,1029(1979) ).Google Scholar
  68. S7).
    O. Steinmann, Bound states in quantum electrodynamics, Universität Bielefeld preprint BI-TP 81/17(1981).Google Scholar
  69. T1).
    T. Takabayasi, Prog. Theor. Phys. Suppl. no. 67, 1(1979).Google Scholar
  70. T2).
    L.H. Thomas, Rev. Mod. Phys. 17,182 (1945); Phys. Rev.85,868(1952).Google Scholar
  71. T3).
    I.T. Todorov, Phys. Rev. D3,2351 (1971); see also Properties of Fundamental Interactions,vol. 9, Part C, ed. A. Zichichi (Editrici Compositori, Bologna, 1973) pp. 951–979.Google Scholar
  72. T4).
    I.T. Todorov Dynamics of relativistic point particles as a problem with constraints, Commun. JINR E2-10125, Dubna (1976).Google Scholar
  73. T5).
    I.T. Todorov, Constraint Hamiltonian approach to relativistic point particle dynamics. Part I. Scuola Internazionale di Studi Avenzati, Trieste (1980) and Bielefeld University lecture notes (in preparation).Google Scholar
  74. T6).
    F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators (Plenum Press, N.Y., 1980)-see in particular Sec. I.5 (pp. 44–55) and Chapter VII (pp. 347–412).Google Scholar
  75. V1).
    H. Van Dam, Th. W. Ruijgrok, Classical relativistic equations for particles with spin moving in external fields, Utrecht preprint (1980).Google Scholar
  76. V2).
    H. Van Dam, E.P. Wigner, Phys. Rev. 138B(1965), ibid. 142,838(1966).Google Scholar
  77. W1).
    Von K. Westpfahl, Ann. d. Physik, 20,113 and 241 (1967).Google Scholar
  78. W2).
    J. A. Wheeler, R.P. Feynman, Revs. Mod. Phys. 17,157 (1945), ibid. 21,425(1949).Google Scholar

Copyright information

© Springr-Verlag 1982

Authors and Affiliations

  • I. T. Todorov
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefedld 1

Personalised recommendations