The Hamilton-Jacobi formalism for systems with constraints

  • G. Longhi
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 162)


Arbitrary Constant Poisson Bracket Canonical Transformation Jacobian Form Class Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Note

  1. E. Goursat, “A Course in Mathematical Analysis”, Vol. II, Part Two, Dover Publ, 1959.Google Scholar
  2. F. G. Tricomi, “Equationi a derivate parziali” (in italian), Ed. Cremonese, 1957.Google Scholar
  3. L.E.P. Eisenhart, “Continuous Groups of Transformations”, Dover Pub., 1961.Google Scholar
  4. G.F. D. Duff “Partial Differential Equations”, Univ. of Toronto Press, 196.Google Scholar
  5. J. Dieudonné, “Treatise on Analysis, Vol. IV, Chapter XVIII, Academic Press, 1974.Google Scholar
  6. Y. Choquet-Bruhat, C. De Witt-Morette and M. Dillard-Bleick, “Analysis, Manifolds and Physics”, Chapter IV, Section C, North-Holland Pub., 1977.Google Scholar
  7. R. Hermann, “Interdisciplinary Mathematics, especially Vol. XIV, Chapters XV and XVI, Math. Sci. Press, 1977. For the Hamilton-Jacobi theory in analytical mechanics see, for instanceGoogle Scholar
  8. C. Lanczos, “The Variational Principles of Mechanics”, Univ. of Toronto Press, 1962.Google Scholar
  9. H. Rund, “The Hamilton-Jacobi Theory in the Calculus of Variations”, Van Nostrand, 1966. For the application of the H-J theory to constrained systems seeGoogle Scholar
  10. A. Komar, Phys. Rev. D.18,1881 (1978). and for other applications, especially field theory see, for instanceCrossRefGoogle Scholar
  11. P.G. Bergmann, Phys. Rev. 144,1078 (1966).CrossRefGoogle Scholar
  12. H.A. Kastrup, Phys. Lett. 70B,195 (1977).Google Scholar
  13. K. Kuchar, “Canonical Methods of Quantizations”, Univ. of Utah preprint, UT 84 112, 1980, and references quoted therein.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • G. Longhi
    • 1
  1. 1.Istituto di Fisica Teorica, Universita di FirenzeSezione Istituto Nazionale di Fisica Nucleare di FirenzeSpain

Personalised recommendations