Singular lagrangian formalism in particle dynamics, II

  • G. Longhi
  • D. Dominici
  • J. Gomis
  • J. A. Lobo
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 162)


Class Constraint Poisson Algebra Mass Constraint Chain Configuration Linear Canonical Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    L.L. Foldy, Phys. Rev. 122,275 (1961).CrossRefGoogle Scholar
  2. 2).
    L.L. Foldy and R.A. Krajcik, Phys. Rev. Lett., 32,1025 (1974); Phys. Rev. D12,1700(1975).CrossRefGoogle Scholar
  3. 2a.)
    H.W. Woodcock and P. Havas, Phys. Rev. D6,3422 (1972).Google Scholar
  4. 2b).
    F. Coester and P. Havas, Phys. Rev. D14,2556 (1976).Google Scholar
  5. 2c).
    F. Coester, Helv. Phys. Acta 37,7 (1965).Google Scholar
  6. 3).
    I.T. Todorov, “Constraint Approach to Relativistic Point Particle Dynamics, Part I”, Lecture presented at the Scuola Int. di Studi Avanzti at the ICTP, Trieste, 1980.Google Scholar
  7. 4).
    T. Takabayasi, Suppl. Prog. Theor. Phys. 67,1 (1979).Google Scholar
  8. 5).
    L. Lusanna, “A model for N Classical Relativistic Particles”, Syracuse Univ. preprint, C00-3533.182, Dec. 1980.Google Scholar
  9. 6).
    S.N. Sokolov, Dokl. Akad. Nauk. SSSR 233,575 (1977) (Sov. Phys. Dokl. 22,198(1977) ); Teor. Mat. Fiz. 36,193(1978) (Theor. Math. Phys. 36,682(1978) ).Google Scholar
  10. 7).
    F. Rohrlich, Phys. Rev. D23,1305 (1981).Google Scholar
  11. 8).
    H. Sazdjian, “Relativistic and Separable Classical Hamiltonian Particle Synamics”, Orsay preprint, IPNO/TH-81-4 (Jan. 1981).Google Scholar
  12. 9).
    I.T. Todorov, Cmm. JINR E2-10125 Dubna (1976).Google Scholar
  13. 9a).
    V.V. Molotkov and I.T. Todorov, Comm. Math. Phys. 79,111 (1981).CrossRefGoogle Scholar
  14. 10).
    A. Komar, Phys. Rev. D18,1881,1887,3617 (1978).Google Scholar
  15. 11).
    Ph. Droz-Vincent, “N-body Relativistic System”, College de France, Paris, July 1979.Google Scholar
  16. 12).
    J. Gomis, J.A. Lobo and J.M. Pons, “A model for N-body relativistic interactions”, Nuovo Cimento 64B,316 (1981).Google Scholar
  17. 13).
    L. Bel, “Mecanica Relativista Predictiva”, curso Depart. Fis. Teor., Barcelona Univ. UAB FT-34, 1977; Ann. Inst. H. Poincaré 14,189(1971).Google Scholar
  18. 13a).
    L. Bel and J. Martin, Ann. Inst. H. Poincaré 22,173 (1975); 33,409 (1980).Google Scholar
  19. 13b).
    L. Bel and X. Fustero, Ann. Inst. H. Poincaré 25,411 (1976).Google Scholar
  20. 14).
    A. Komar, “Relativistic Action-at-a-distance and quasi-separability” Yeshiva Univ. preprint, 1980.Google Scholar
  21. 15).
    K. Kamimura and T. Shimizu, Progr. Theor. Phys. 58,383 (1977).Google Scholar
  22. 16).
    D. Dominici, J. Gomis and G. Longhi, Nuovo Cimento 48B,152 (1978); 48A,257(1978); 56A,263(1980).Google Scholar
  23. 17).
    For a different approach to the study of this lagrangian see S. Kojima, Progr. Theor. Phys. 62,1403 (1979).Google Scholar
  24. 18).
    K. Kamimura, “Canonical Formulation of Interacting Relativistic Three Particle System”, Firenze Univ. preprint, May 1981.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • G. Longhi
    • 1
  • D. Dominici
    • 2
  • J. Gomis
    • 3
  • J. A. Lobo
    • 3
  1. 1.Sezione I.N.F.N. di FirenzeIstituto di Fisica Teorica, Univ. di FirenzeSpain
  2. 2.Sezione I.N.F.N. di FirenzeSpain
  3. 3.Departamento de Física TeóricaUniversidad de BarcelonaSpain

Personalised recommendations