Advertisement

Spontaneously broken and dynamically enhanced global and local symmetries

  • Jürg Fröhlich
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 160)

Abstract

I re-examine the notions of spontaneously broken, global and local symmetries and discuss them in terms of some examples in quantum field theory or statistical mechanics. I then briefly recall some basic ideas and facts about the renormalization group. They are used to introduce and discuss the concept of dynamically enhanced (or “generated”) asymptotic symmetries.

Keywords

Gauge Theory Gauge Group Symmetry Group Global Symmetry Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References.

  1. 1.
    H. Weyl,“Symmetry”, Princeton, N.J.: Princeton University Press, 1952.Google Scholar
  2. 2.
    S. Coleman, Secret Symmetry: An Introduction to Spontaneous Symmetry Breakdown and Gauge Fields, Erice Lectures 1973, A. Zichichi (ed.).Google Scholar
  3. 3.
    J. Fröhlich, Bull. Amer. Math. Soc. 84, 165, (1978).Google Scholar
  4. 4.
    L. Michel, Reviews of Modern Physics 52, 617, (1980).Google Scholar
  5. 5.
    J. Goldstone, Nuovo Cimento 19, 15, (1961); Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345, (1961), 124, 246, (1961).Google Scholar
  6. 6.
    H. Ezawa and J.A. Swieca, Commun. math. Phys. 5, 330, (1967).Google Scholar
  7. 7.
    J. Fröhlich, B. Simon and T. Spencer, Commun. math. Phys. 50, 79, (1976).Google Scholar
  8. 8.
    J. Fröhlich and T. Spencer, in “New Developments in Quantum Field Theory and Statistical Mechanics”, M. Lévy and P. Mitter (eds.), New York & London: Plenum, 1977.Google Scholar
  9. 9.
    J. Fröhlich, Acts, Physics Austrica Suppl. XV, 133, (1976).Google Scholar
  10. 10.
    S. Elitzur, Phys. Rev. D12, 3978, (1975).Google Scholar
  11. 11.
    G.F. De Angelis, D. De Falco and F. Guerra, Phys. Rev. D17, 1624, (1978).Google Scholar
  12. 12.
    J. Fröhlich, G. Morchio and F. Strocchi, Phys. Letts. 97B, 249, (1980); Nucl. Phys. B, in press.Google Scholar
  13. 13.
    K. Wilson and J. Kogut, Physics Reports 12C, No2, 76, (1974).Google Scholar
  14. 13a.
    K. Wilson, Rev. Mod. Phys. 47, No4Google Scholar
  15. 13b.
    L. Kadanoff, A. Haughton and M. Yalabik, J. Stat. Phys. 14, No2, 171, (1976).Google Scholar
  16. 13c.
    G. Jona-Lasinio, Nuovo Cimento 26B,99, (1975).Google Scholar
  17. 13d.
    S. Ma, Rev. Mod. Phys. 46, No4, 589, (1973).Google Scholar
  18. 13e.
    P. Bleher and Ja. Sinsi, Commun. math. Phys. 33, 23, (1973), 45, 247, (1975).Google Scholar
  19. 13f.
    G. Jona-Lasinio, in “New Developments” (see ref. 8).Google Scholar
  20. 13g.
    M.E. Fisher, Rev. Mod. Phys. 46, No4, 597, (1974).Google Scholar
  21. 14.
    D. Foerster, H.B. Nielsen, M. Ninomiya, Phys. Lett. 94 B, 135, (1980).Google Scholar
  22. 14a.
    J. Iliopoulos, D.V. Nanopoulos and T.N. Tomaras, Phys. Lett. 94 B, 141, (1980).Google Scholar
  23. 14b.
    Réf. 39 (Sect. 7); ref. 27; ref. 16.Google Scholar
  24. 14c.
    K. Cahill and P. Denes, Preprint, Univ. New Mexico: UNMTP-81/020.Google Scholar
  25. 15.
    Refs. 39 and 27; J. Fröhlich and T. Spencer, Phase Diagrams and Critical Properties of Classical Coulomb Systems, Erice 1980.Google Scholar
  26. 16.
    C. Newman and L. Schulman,“Asymptotic Symmetry: Enhancement and Stability,” submitted to Phys. Rev. Letters.Google Scholar
  27. 17.
    L. Michel and L. Radicati, Ann. Phys. (NY) 66, 758, (1971).Google Scholar
  28. 17a.
    D. Kastler et al., Commun. math. Phys. 27, 195, (1972).Google Scholar
  29. 18.
    J. Fröhlich, G. Morchio and F. Strocchi, Ann. Phys. (N.Y.) 119, 241, (1979), Phys. Lett. 89 B, 61, (1979).Google Scholar
  30. 19.
    Ph. Martin, Preprint, EPF-Lausanne, 1981.Google Scholar
  31. 20.
    N.D. Mermin, J. Math. Phys. 8, 1061, (1967).Google Scholar
  32. 20a.
    J. Phys. Soc. Japan, Suppl. 26, 203, (1969).Google Scholar
  33. 21.
    S. Coleman, Commun. math. Phys. 31, 259, (1974). See also ref. 6.Google Scholar
  34. 22.
    J. Fröhlich and C. Pfister, Commun. math. Phys. (1981).Google Scholar
  35. 23.
    H. Kunz and C. Pfister, Commun. math. Phys. 46, 245, (1976).Google Scholar
  36. 24.
    J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, Commun. math. Phys. 62, 1, (1978).Google Scholar
  37. 25.
    F. Dyson, E.H. Lieb and B. Simon, J. Stat. Phys. 18, 335, (1978).Google Scholar
  38. 26.
    E.H. Lieb, in “Mathematical Problems in Theoretical Physics”, G.F. Dell'Antonio, S. Doplicher and G. Jona-Lasinio (eds.), Springer Lecture Notes in Physics, BerlinHeidelberg-New York: Springer Verlag, 1978.Google Scholar
  39. 27.
    J. Fröhlich and T. Spencer, “Massless Phases and Symmetry Restoration....”, Commun. math. Phys., to appear.Google Scholar
  40. 28.
    A. Guth, Phys. Rev. D21, 2291, (1980).Google Scholar
  41. 29.
    S. Elitzur, R. Pearson and J. Shigemitsu, Phys. Rev. D19, 3698, (1979).Google Scholar
  42. 30.
    K. Wilson, Phys. Rev. D10, 2445, (1974).Google Scholar
  43. 31.
    K. Osterwalder and E. Seiler, Ann. Phys. (NY) 110, 440, (1978).Google Scholar
  44. 32.
    D. Brydges, J. Fröhlich and E. Seiler, Ann. Phys. (NY) 121, 227, (1979).Google Scholar
  45. 33.
    E. Seiler, “Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics”, Springer Lecture Notes in Physics, to appear.Google Scholar
  46. 34.
    H. van Beijeren, Commun. math. Phys. 40, 1, (1975), Phys. Rev. Lett. 38, 993, (1977); ref. 39, (Sect. 7); C. Itzykson, M.E. Peskin and J.-B. Zuber, Phys. Lett. 95 B, 259, (1980); A. Hasenfratz, E. Hasenfratz and P. Hasenfratz, Nucl. Phys. B180, 353, (1981); M. L:uscher, DESY Preprint 1980.Google Scholar
  47. 35.
    G. Morchio and F. Strocchi, Phys. Lett. lQ4 B, 277, (1981).Google Scholar
  48. 36.
    J. Glimm, A. Jaffe and T. Spencer, Commun. math. Phys. 45, 203 (1975)Google Scholar
  49. 36a.
    R. Dobrushin and S. Schlosman, Preprint 1981.Google Scholar
  50. 37.
    J. Fröhlich, “The Statistical Mechanics of Defect Gases”, unpublished.Google Scholar
  51. 38.
    D. Brydges and P. Federbush, Commun. math. Phys. 62, 79, (1978); D. Brydges, J. Fröhlich and T. Spencer, “The Random Walk Representation of Classical Spin Systems and Correlation Inequalities”, Commun. math. Phys., to appear.Google Scholar
  52. 39.
    J. Fröhlich and T. Spencer, “The Kosterlitz-Thouless Transition in Two-Dimensional Abelian Spin Systems and the Coulomb Gas”, Commun. math. Phys. to appear.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Jürg Fröhlich
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-Yvette

Personalised recommendations