Elastodynamics of porous media

  • David Linton Johnson
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 154)


The viscous and elastic properties of a two component medium are derived from a general 2 component Lagrangian formulation. For the case when one of the components is a fluid, there are 2 compressional waves, one of which (the slow wave) is diffusive at low frequencies and propagatory at high. Comparison is made against experiments on various porous fluid saturated systems. It is seen that the diffusive mode in polymer gels, 4th sound in HeII, the diffusion of a fluid pressure pulse through a porous medium, and the recent observation of a slow compressional propagatory wave in water saturated fused glass beads are special cases of this additional mode prediced by the theory.


Slow Wave High Frequency Limit Superfluid Fraction Skeletal Frame Spatial Derivative Term 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Biot, J. Acoust. Soc. Am. 28, 168 (1956); 28, 179 (1956).Google Scholar
  2. 2.
    M. A. Biot, J. Appl. Phys. 33,1482 (1962).Google Scholar
  3. 3.
    M. A. Biot, J. Acoust. Soc. Am. 34, 1254 (1962).Google Scholar
  4. 4.
    M. A. Blot and D. G. Willis, J. Appl. Mech. 24, 594 (1957).Google Scholar
  5. 5.
    D. L. Johnson (unpublished)Google Scholar
  6. 6.
    This assumption may very well break down when the pore fluid is water and the matrix is a rock [M.R.J. Wyllie, G.H.F. Gardner, and A. R. Gregory, Geophysics 27,569 (1962)].Google Scholar
  7. 7.
    R. D. Stoll in Physics of Sound in Marine Sediments, edited by L. Hampton (Plenum, NY, 1974).Google Scholar
  8. 8.
    J. Geertsma and D. C. Smit, Geophysics 26, 169 (1961).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, (Pergamon, NY, 1959) p. 31ff.Google Scholar
  10. 10.
    J. G. Berryman, Appl. Phys. Lett. 37, 382 (1980).Google Scholar
  11. 11.
    Ref. 9, p. 88 flGoogle Scholar
  12. 12.
    C. H. Yew and P. N. Jogi, Exp. Mech. 18,167 (1978); H. D. McNiven and Y. Mengi, J. Acoust. Soc. Am. 61, 972 (1977).Google Scholar
  13. 13.
    D. L. Johnson, Appl. Phys. Lett. 37, 1065 (1980).Google Scholar
  14. 14.
    R. Johnson and D. Johnson (unpublished).Google Scholar
  15. 15.
    T. J. Plona, App. Phys. Lett. 36, 259 (1980).Google Scholar
  16. 16.
    T. J. Plona and D. L. Johnson, in 1980 Ultrasonic Symposium Proceedings, edited by J. deKlerk and B. R. McAvoy (IEEE, NY, NY 1980), pp. 868–872.Google Scholar
  17. 17.
    R. C. Chandler and D. L. Johnson, J. Appl. Phys. (to be published); R. C. Chandler, J. Acoust. Soc. Am. (to be published).Google Scholar
  18. 18.
    T. Tanaka, L. O. Hocker, and G. B. Benedek, J. Chem. Phys. 59, 5151 (1973).Google Scholar
  19. 19.
    D. L. Johnson (unpublished).Google Scholar
  20. 20.
    P. G. DeGennes, Macromolecule 9, 587 (1976).Google Scholar
  21. 21.
    J. C. Bacri, J. M. Courdille, J. Dumas and R. Rajaonarison, J. Physique 41, L–369 (1980); J. C. Bacri and R. Rajaonarison, J. Physique 40, L-5 (1979).Google Scholar
  22. 22.
    D. L. Johnson and T. J. Plona (unpublished).Google Scholar
  23. 23.
    I. Rudnick, New Directions in Physical Acoustics, Proceedings of the Enrico Fermi Summer School, Course LXIII (Academic, NY, 1976), p. 112.Google Scholar
  24. 24.
    K. A. Shapiro and I. Rudnick, Phys. Rev. 137, A1383 (1965).Google Scholar
  25. 25.
    R. J. S. Brown, Geophysics 45, 1269 (1980).Google Scholar
  26. 26.
    P. N. Sen, C. Scala and M. H. Cohen, Geophysics 46, 781 (1981).Google Scholar
  27. 27.
    T. J. Plona, D. L. Johnson, and C. Scala (unpublished).Google Scholar
  28. 28.
    D. L. Johnson and P. N. Sen, Phys. Rev. B (to be published).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • David Linton Johnson
    • 1
  1. 1.Schlumberger-Doll ResearchRidgefield

Personalised recommendations