Skip to main content

Coherent medium approach to hopping conduction

  • Conference paper
  • First Online:
Macroscopic Properties of Disordered Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 154))

Abstract

We have presented the coherent medium approach to hopping conduction problems where the motion of carriers obey the usual random walk equation and discussed the existence of the coherent medium which is defined through an average of the random walk propagator. We have introduced the coherent medium approximation (CMA) to obtain an approximate but easily tractable coherent medium. The CMA is a generalized use of the coherent potential approximation (CPA) in the master equation. The CPA is one of the most fruitful methods in treating random systems and is widely used in electron 19 and phonon problems. 18 We have applied the CMA to various cases of hopping conduction in one- and three-dimensions and compared the results with experiment. A simple comparison of the CMA with other methods has also been given.

We have derived the CMA condition Eq. (5.11) from the multiple scattering formalism due to Lax.12,13 An alternative derivation of Eq. (5.11) was given by Odagaki and Lax,l10 where a traditional idea of the effective medium approximation was used.36 Namely, a random unit is subjected to an as yet unknown effective medium and the effective medium is determined to be such that the resulting extra perturbation is required to vanish on the average over all possibilities of the random unit. A similar condition to Eq. (5.11) has also been used in the problem of random resistor networks.37

We hope that further improvements of the coherent medium approximation will be developed including traps, asymmetric jump rates, cluster effects and a similar method will be applied to other problems, for example, optical properties and magnetic properties of random systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961).

    Google Scholar 

  2. J. M. Reyes, M. Sayer, A. Mansingh and R. Chen, Can. J. Phys. 54, 413 (1976).

    Google Scholar 

  3. A. S. Barker Jr., J. A. Ditzenberger and J. P. Remeika, Phys. Rev. B14, 4254 (1976).

    Google Scholar 

  4. M. Sayer, A. Mansingh, J. B. Webb and J. Noad, J. Phys. C: Solid State Phys. 11, 315 (1978).

    Google Scholar 

  5. R. M. Mehra, P. C. Mathur, A. K. Kathuria and R. Shyam, Phys. Rev. B18, 5620 (1978).

    Google Scholar 

  6. M. Suzuki, J. Phys. Chem. Solids 41, 1253 (1980).

    Google Scholar 

  7. S. R. Elliott, Phil. Mag. 36, 1291 (1977).

    Google Scholar 

  8. Actually, P(s,t I s0,0) can be written as an absolute square of a matrix element of e −h−iHt , where H is the total Hamiltonian of the underlying problem. See refs. 9 and 10.

    Google Scholar 

  9. H. Scher and M. Lax,(a) Phys. Rev. B7, 4491 (1973);(b) ibid, 4502 (1973).

    Google Scholar 

  10. T. Odagaki and M. Lax, Phys. Rev. B to be published.

    Google Scholar 

  11. For example, T. Holstein, S. K. Lyo and R. Orbach, Phys. Rev. B15, 4693 (1977).

    Google Scholar 

  12. M. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev. 85, 621 (1952).

    Google Scholar 

  13. M. Lax, “Wave Propagation and Conductivity in Random Media,” in Stochastic Differential Equations SIAMAMS (Soc. for Industrial and Applied Math.-American Mathematical Soc.) Proc. vol. 6, 35–95 Amer. Math. Soc. Providence, R.I. (1973).

    Google Scholar 

  14. J. Klafter and R. Silbey, Phys. Rev. Letts. 44, 55 (1980).

    Google Scholar 

  15. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); See also Lectures in Theoretical Physics Vol. III, 106 (edited by W. E. Brittin), Interscience, New York (1961); and Phys. Rev. 124, 983 (1961).

    Google Scholar 

  16. See, for example, F. Yonezawa and K. Morigaki, Prog. Theor. Phys. Suppl. 53, 1 (1973); R. J. Elliott, J. A. Krumhansl and P. L. Leath, Rev. Mod. Phys. 46, 465 (1974).

    Google Scholar 

  17. M. Lax, Phys. Rev. 79, 200 (1950).

    Google Scholar 

  18. D. W. Taylor, Phys. Rev. 156, 1017 (1967).

    Google Scholar 

  19. P. Soven, Phys. Rev. 156, 809 (1967).

    Google Scholar 

  20. J. Bernasconi, W. R. Schneider and W. Wyss, Z. Physik B 37, 175 (1980).

    Google Scholar 

  21. M. Lax and H. Scher, Phys. Rev. Letts. 39, 781 (1977).

    Google Scholar 

  22. E. Feenberg, Phys Rev. 74, 206 (1948); E.. N. Economou, “Green's Functions in Quantum Physics,” (Springer-Verlag, Berlin, Heidelberg 1979).

    Google Scholar 

  23. R. Abou-Chacra, P. W. Anderson, and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1734 (1973).

    Google Scholar 

  24. J. Bernasconi, S. Alexander and R. Orbach, Phys. Rev. Letts. 41, 185 (1978).

    Google Scholar 

  25. B. Movaghar, J. Phys. C: Solid State Phys. 13, 4915 (1980).

    Google Scholar 

  26. T. Odagaki and M. Lax, Phys. Rev. B to be published.

    Google Scholar 

  27. T. Odagaki and M. Lax, Phys. Rev. Letts, 45, 847 (1980).

    Google Scholar 

  28. T. Odagaki and M. Lax, in preparation.

    Google Scholar 

  29. J. Bernasconi, H. U. Beyeler, S. Strässler and S. Alexander, Phys. Rev. Letts. 42, 819 (1979).

    Google Scholar 

  30. S. Alexander, J. Bernasconi; W. R. Schneiderand R. Orbach, Rev. Mod. Phys. 53, 175 (1981).

    Google Scholar 

  31. T. Odagaki and M. Lax, in preparation.

    Google Scholar 

  32. P. M. Richards and R. L. Renken, Phys. Rev. B21, 3740 (1980).

    Google Scholar 

  33. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).

    Google Scholar 

  34. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Google Scholar 

  35. J. A. McInnes, P. N. Butcher and J. D. Clark, Phil. Mag. B41, 1 (1980).

    Google Scholar 

  36. R. Landauer, “Electrical Conductivity in Inhomogeneous Media,” in Proceedings of the First Conlerence on the Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J. C. Garland and D. B. Tanner, (A.I.P. New York, 1978), p 2.

    Google Scholar 

  37. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Burridge S. Childress G. Papanicolaou

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Lax, M., Odagaki, T. (1982). Coherent medium approach to hopping conduction. In: Burridge, R., Childress, S., Papanicolaou, G. (eds) Macroscopic Properties of Disordered Media. Lecture Notes in Physics, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-11202-2_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-11202-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11202-0

  • Online ISBN: 978-3-540-39031-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics