Self-diffusion as an example for the hydrodynamic limit

  • H. Spohn
Statistical Mechanics General Plenary Session
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Local Equilibrium Test Particle Hydrodynamic Limit Linear Boltzmann Equation Velocity Autocorrelation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Lebowitz, H. Spohn, Self-Diffusion, preprintGoogle Scholar
  2. [2]
    J. L. Lebowitz, H. Spohn, Steady State Self-Diffusion at Low Density, in preparationGoogle Scholar
  3. [3]
    C. Kipnis, J. L. Lebowitz, E. Presutti, H. Spohn, Self-Diffusion for Particles with Stochastic Collisions in One Dimension, in preparationGoogle Scholar
  4. [4]
    O. E. Lanford, Time Evolution of Large Classical Systems. In: Dynamical Systems, Theory and Applications, ed. J. Moser. Lecture Notes in Physics 38, Springer, Berlin.Google Scholar
  5. [5]
    L. A. Bunimovich, Ya, Sinai, Comm. Math. Phys. 78, 247 and 279 (1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • H. Spohn
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations