Some advances and problems in classical general relativity

  • Jürgen Ehlers
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Black Hole Gravitational Wave Isolate System Multipole Moment Newtonian Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.W. Hawking & G.F.R. Ellis: The Large Scale Structure of Spacetime. (Cambridge U.P., Cambridge 1973)Google Scholar
  2. 2.
    M. Levy & S. Deser (Eds.): Recent Developments in Gravitation. (Plenum Press, New York 1979)Google Scholar
  3. 3.
    S.W. Hawking & W. Israel (Eds.): General Relativity. (Cambridge U.P., Cambridge 1979)Google Scholar
  4. 4.
    A. Held (Ed.): General Relativity And Gravitation, 2 vols. (Plenum Press, New York 1980)Google Scholar
  5. 5.
    R. Penrose: Some Unsolved Problems in Classical General Relativity. (Preprint, Mathematical Institute, Oxford 1981)Google Scholar
  6. 6.
    R.P. Geroch: In Asymptotic Structure of Space-Time, Eds. F.P. Esposito & L. Witten. (Plenum Press, New York 1977)Google Scholar
  7. 7.
    E.T. Newman & K.P. Tod: In vol. 2 of ref. 4.Google Scholar
  8. 8.
    A. Ashtekar: In vol. 2 of ref. 4.Google Scholar
  9. 9.
    B.G. Schmidt: In Isolated Gravitating Systems in General Relativity, Ed. J. Ehlers (North-Holland Publishing Company, Amsterdam 1979)Google Scholar
  10. 10.
    See, e.g., G. Ludwig: Gen. Rel. Grav. 7, 293 (1976)Google Scholar
  11. 11.
    H. Friedrich: On The Existence of Analytic Null Asymptotically Flat Solutions of Einstein's Vacuum Field Equations, Proc. Roy. Soc. A (to appear)Google Scholar
  12. 12.
    A. Ashtekar: Radiative Degrees of Freedom of the Gravitational Field in Exact General Relativity. (Preprint, Syracuse University, March 1981)Google Scholar
  13. 13.
    B. Carter: In Proceedings of the First Marcel Grossmann Meeting On General Relativity, Ed. R. Ruffini. (North-Holland Publishing Company, Amsterdam 1977)Google Scholar
  14. 14.
    J. Ehlers: In Grundlagenprobleme der modernen Physik, Eds. J. Nitsch, J. Pfau & E.-W. Stachow. (Bibliographisches Institut Mannheim, to appear)Google Scholar
  15. 15.
    B. Carter: In ref. 3.Google Scholar
  16. 16.
    R. Beig & W. Simon: Proof of a Multipole Conjecture due to Geroch (University of Vienna preprint UWThPh-80-14); On the Multipole Expansion for Stationary Space-Times (ibid. UWThPh-80-23)Google Scholar
  17. 17.
    M. Streubel & R. Schattner: Ann. Inst. Henri Poincaré 34, 145 (1981)Google Scholar
  18. 18.
    B.C. Xanthopoulos: J. Math. Phys. 22, 1254 (1981)Google Scholar
  19. 19.
    C. Hoenselaers: Stationary, Axisymmetric Spactimes in GR. (Habilitationsschrift Universitdt München, to appear)Google Scholar
  20. 20.
    R.P. Geroch: J. Math. Phys. 12, 918 (1971); 13, 394 (1972)Google Scholar
  21. 21.
    H. Bondi et al., Proc. Roy. Soc. A (London) 269, 21 (1962); R.K. Sachs, ibid. 270, 103 (1962); R.K. Sachs: In Relativity, Groups And Topology, Eds. C. De Witt & B. De Witt. (Gordon & Breach Science Publishers, New York 1964)Google Scholar
  22. 22.
    R. Schoen & S.-T. Yau: Comm. Math. Phys. 65, 45 (1979); 79, 231 (1981)Google Scholar
  23. 23.
    A. Ashtekar & A. Magnon-Ashtekar: Phys. Rev. Lett. 43, 181 (1979)Google Scholar
  24. 24.
    G.T. Horowitz & M.J. Perry: Gravitational Energy Cannot Become Negative. (Princeton University Preprint, 1981)Google Scholar
  25. 25.
    E. Witten: Comm. Math. Phys. 80, 381 (1981)Google Scholar
  26. 26.
    G.T. Horowitz & K.P. Tod: A relation between local and total energy in general relativity. (Comm. Math. Phys., to be published)Google Scholar
  27. 27.
    J.H. Taylor, L.A. Fowler & P.M. McCulloch: Nature 277, 437 (1979)Google Scholar
  28. 28.
    W.G. Dixon: In Isolated Gravitating Systems in General Relativity, Ed. J. Ehlers. (North-Holland Publishing Company, Amsterdam 1979)Google Scholar
  29. 29.
    R. Schattner: Gen. Rel. Grav. 10, 377, 395 (1979); MPI-PAE/Astro 236, Munich 1979.Google Scholar
  30. 30.
    D. Kerlick: Gen. Rel. Grav. 12, 467, 521 (1980)Google Scholar
  31. 31.
    T. Damour: C.R. Acad. Sci. Paris 291A, 227 (1980)Google Scholar
  32. 32.
    B.F. Schutz: Phys. Rev. D 22, 249 (1980); T. Futamase, Ph.D.-Thesis, Univ. College Cardiff, 1981Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Jürgen Ehlers
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikGermany

Personalised recommendations