The Search for Quantum Differential Geometry

  • John E. Roberts
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 153)


Gauge Theory Gauge Group Vector Bundle Minkowski Space Finite Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.E. Roberts, A Survey of Local Cohomology, Lecture Notes in Physics 80, 81–93, Springer: Berlin, Heidelberg, New York 1978.Google Scholar
  2. [2]
    J.E. Roberts, Net Cohomology and its Applications to Field Theory, In: Quantum Fields-Algebras, Processes, ed. L Streit, 239–268, Springer: Wien, New York 1980.Google Scholar
  3. [3]
    S. Coleman, Classical Lumps and Their Quantum Descendants, In: New Phenomena in Subnuclear Physics Part A ed. A. Zichichi, 297–407. Plenum Press: New York, London 1977.Google Scholar
  4. [4]
    C. Parenti, F. Strocchi, G. Velo, Hilbert Space Sectors for Solutions of Non-Linear Relativistic Field Equations. Commun. Math. Phys. 53, 65–96 (1977).Google Scholar
  5. [5]
    R.G. Swan, Vector Bundles and Projective Modules, Trans. Amer. Math. Soc. 105, 264–277 (1962).Google Scholar
  6. [6]
    I.M. Singer, Some Remarks on the Gribov Ambiguity, Commun. Math. Phys. 60, 7–12 (1978).Google Scholar
  7. [7]
    J.E. Roberts, Localization in Algebraic Field Theory, to be submitted to Commun. Math. Phys.Google Scholar
  8. [8]
    J.E. Roberts, New Light on the Mathematical Structure of Algebraic Field Theory, Proc. of Symposia in Pure Mathematics, Amer. Math. Soc. to appear.Google Scholar
  9. [9]
    A. Connes, C*-algèbres et géométrie différentielle, C.R. Acad. Sci. Paris, A 290, 599–604 (1980).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • John E. Roberts
    • 1
  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrück

Personalised recommendations