A note on non-linear aspects of QFT

  • Erwin Brüning
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 153)


A summary of a new approach to some non-linear aspects of general QFT is given. The basic ingredient is the field-sector-decomposition (FSD) of the sequence of VEV's which can be viewed as a generalization of truncation. Some implications of the FM are pointed out.


Linear Functional Basic Ingredient Continuous Linear Functional Redundant Part Cyclic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Streater, R.F., A.S. Wightman: PCT, Spin and statistics and all that. New York, W.A. Benjamin 1964; Jost, R.: The general theory of quantized fields. Providence, R.I.: American Mathematical Society 1965; Bogolubov, N.N., A.A. Logunov, I.T. Todorov: Introduction to the axiomatic field theory. London, Benjamin 1975.Google Scholar
  2. [2]
    Borchers, H.J.: On the structure, of the algebra of field operators. Nuovo Cimento 24, 214 (1962); Algebraic aspects of Wightman field theory, in'Statistical Mechanics and field theory', ed. R.N. Sen, e. Weil, Haifa Summer School 1971, Israel University Press 1972.Google Scholar
  3. [3]
    Laßner, G. A. Uhlamnn: On positive functionals. Commun. Math. Phys. 7, 152–159 (1968).Google Scholar
  4. [4]
    Glaser, V.: The positivity condition in momentum space. In: Problems of theoretical physics, pp. 68–69, Moscow: Nauka 1969.Google Scholar
  5. [5]
    Wyss, W.: The fieldalgebra and its positive linear functionals. Commun. Math. Phys. 27, 223–234 (1972).Google Scholar
  6. [6]
    Yngvason, J.: On the algebra of test functions for field operators. Decomposition of linear functionals into positive one's. Commun. Math. Phys. 34, 315–333 (1973); Über den algebraischen Formalismus in der Wightman'schen Quantenfeld-theorie, Habilitationsschrift, Univ. of Göttingen 1978; Translationally invariant states and the spectrum ideal in the algebra of test functions for quantum fields. The Science Institute, Univ. of Iceland, Reykjavik. Preprint 1980.Google Scholar
  7. [7]
    Brüning, E.: On the characterization of Relativistic Quantum Field Theories in Terms of finitely many VEV's: I. Commun. Math. Phys. 58, 139–166 (1978), II. Commun. Math. Phys. 58, 167–194 (1978).Google Scholar
  8. [8]
    Hofmann, G., G. Laßner: Existence Proofs for Wightman-Typ Functionals, Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., 24, 535–543 (1975).Google Scholar
  9. [9]
    Schmüdgen, K.: The order structure of topological *-algebras of unbounded operators I. Rep. Math. Phys. 7, 213, (1975); Graded and filtrated topological *-algebras. The closure of the positive cone. Revue Commun. Math. Pures et Appl. to appear.Google Scholar
  10. [10]
    Hofmann, G.: On the Existence of Quantum-Fields in Space-Time-Dimension 4, Preprint KMU-MPh. 8 (1978) submitted to Rep. Math. Phys.; Ein hinreicherides Kriterium für die Normalität von Kegeln in Tensoralgebren und einige Anwendungen. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R., 27, 261–269 (1978).Google Scholar
  11. [11]
    Brüning, E.: On Jacobi-Fields. Proceedings of the Colloquium on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, pp. 24–30, Esztergon 1979.Google Scholar
  12. [12]
    Alcántara, J.: Order properties of a class of tensor algebras. Preprint 1980. The open University, Walton Hall, Midton MK 76 AA, Fac. of Mathematics.Google Scholar
  13. [13]
    Brüning, E.: On the construction of fields and the topological rôle of Jacobi-fields, Preprint, CERN-TH 2830, 1980; to appear in Rep. Math. Phys.Google Scholar
  14. [14]
    Brüning, E.: The n-field-irreducible part of a n-point-functional. Ann. Inst. Henri Poincaré, Sect. A. Vol. XXXIV, n° 3, 1981, 309–328; An Analysis of some non-linear aspects of QFT, preprint Bi-TH 40, July 1981.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Erwin Brüning
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldUSA

Personalised recommendations